Skip to main content

Advertisement

Log in

Vascular Calcification in Diabetes: Mechanisms and Implications

  • Macrovascular Complications in Diabetes (PD Reaven, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) remains the leading cause of death among adults with diabetes, and CVD prevention remains a major challenge. Coronary artery calcium (CAC) score measured by electron beam tomography (EBT) or multi-slice detector computed tomography correlates closely with plaque burden and coronary angiography, and predicts coronary events independently of other risk factors. Further, progression of CAC over several years has been shown to predict increased mortality. Coronary calcification is an active process strongly associated with atherosclerotic plaque evolution and is an accepted surrogate endpoint in studies of patients with diabetes older than 30. In this review, recent findings regarding the mechanisms and implications of vascular calcification in diabetes will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125:e2–220.

    Article  PubMed  Google Scholar 

  2. Erbel R, Mohlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang A, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol. 2010;56:1397–406.

    Article  PubMed  Google Scholar 

  3. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:837–53.

  4. Laing SP, Swerdlow AJ, Slater SD, Burden AC, Morris A, Waugh NR, et al. Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia. 2003;46:760–5.

    Article  PubMed  CAS  Google Scholar 

  5. Preis SR, Hwang SJ, Coady S, Pencina MJ, D’Agostino RBS, Savage PJ, et al. Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation. 2009;119:1728–35.

    Google Scholar 

  6. Wadwa RP, Kinney GL, Maahs DM, Snell-Bergeon J, Hokanson JE, Garg SK, et al. Awareness and treatment of dyslipidemia in young adults with type 1 diabetes. Diabetes Care. 2005;28:1051–6.

    Article  PubMed  Google Scholar 

  7. Taskinen MR. Quantitative and qualitative lipoprotein abnormalities in diabetes mellitus. Diabetes. 1992;41 Suppl 2:12–7.

    PubMed  Google Scholar 

  8. Soedamah-Muthu SS, Fuller JH, Mulnier HE, Raleigh VS, Lawrenson RA, Colhoun HM. High risk of cardiovascular disease in patients with type 1 diabetes in the U.K.: a cohort study using the general practice research database. Diabetes Care. 2006;29:798–804.

    Article  PubMed  Google Scholar 

  9. Lloyd CE, Kuller LH, Ellis D, Becker DJ, Wing RR, Orchard TJ. Coronary artery disease in IDDM. Gender differences in risk factors but not risk. Arterioscl Thromb Vasc Biol. 1996;16:720–6.

    Article  PubMed  CAS  Google Scholar 

  10. Dabelea D, Kinney G, Snell-Bergeon JK, Hokanson JE, Eckel RH, Ehrlich J, et al. Effect of type 1 diabetes on the gender difference in coronary artery calcification: a role for insulin resistance? The Coronary Artery Calcification in Type 1 Diabetes (CACTI) Study. Diabetes. 2003;52:2833–9.

    Article  PubMed  CAS  Google Scholar 

  11. Colhoun HM, Rubens MB, Underwood SR, Fuller JH. The effect of type 1 diabetes mellitus on the gender difference in coronary artery calcification. J Am Coll Cardiol. 2000;36:2160–7.

    Article  PubMed  CAS  Google Scholar 

  12. Zgibor JC, Piatt GA, Ruppert K, Orchard TJ, Roberts MS. Deficiencies of cardiovascular risk prediction models for type 1 diabetes. Diabetes Care. 2006;29:1860–5.

    Article  PubMed  Google Scholar 

  13. Stevens RJ, Coleman RL, Holman RR. Framingham risk equations underestimate coronary heart disease risk in diabetes. Diabet Med. 2005;22:228.

    Article  PubMed  CAS  Google Scholar 

  14. Michos ED, Nasir K, Braunstein JB, Rumberger JA, Budoff MJ, Post WS, et al. Framingham risk equation underestimates subclinical atherosclerosis risk in asymptomatic women. Atherosclerosis. 2006;184:201–6.

    Article  PubMed  CAS  Google Scholar 

  15. Stevens RJ, Kothari V, Adler AI, Stratton IM. The UKPDS risk engine: a model for the risk of coronary heart disease in Type II diabetes (UKPDS 56). Clin Sci. 2001;101:671–9.

    Article  PubMed  CAS  Google Scholar 

  16. Cleary PA, Orchard TJ, Genuth S, Wong ND, Detrano R, Backlund JY, et al. The effect of intensive glycemic treatment on coronary artery calcification in type 1 diabetic participants of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study. Diabetes. 2006;55:3556–65.

    Article  PubMed  CAS  Google Scholar 

  17. Pambianco G, Costacou T, Ellis D, Becker DJ, Klein R, Orchard TJ. The 30-year natural history of type 1 diabetes complications: the Pittsburgh Epidemiology of Diabetes Complications Study experience. Diabetes. 2006;55:1463–9.

    Article  PubMed  CAS  Google Scholar 

  18. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte MJ, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.

    Article  PubMed  CAS  Google Scholar 

  19. Arad Y, Spadaro LA, Roth M, Scordo J, Goodman K, Sherman S, et al. Correlations between vascular calcification and atherosclerosis: a comparative electron beam CT study of the coronary and carotid arteries. J Comput Assist Tomogr. 1998;22:207–11.

    Article  PubMed  CAS  Google Scholar 

  20. Rumberger JA, Sheedy PFN, Breen JF, Fitzpatrick LA, Schwartz RS. Electron beam computed tomography and coronary artery disease: scanning for coronary artery calcification. Mayo Clin Proc. 1996;71:369–77.

    Article  PubMed  CAS  Google Scholar 

  21. Wong ND, Budoff MJ, Pio J, Detrano RC. Coronary calcium and cardiovascular event risk: evaluation by age- and sex-specific quartiles. Am Heart J. 2002;143:456–9.

    Article  PubMed  Google Scholar 

  22. Wang LY, Abyzov A, Korbel JO, Snyder M, Gerstein M. MSB: a mean-shift-based approach for the analysis of structural variation in the genome. Genome Res. 2009;19:106–17. doi:10.1101/gr.080069.108.

    Article  PubMed  Google Scholar 

  23. Otto SP, Gerstein AC. The evolution of haploidy and diploidy. Curr Biol. 2008;18:R1121–4. doi:10.1016/j.cub.2008.09.039.

    Article  PubMed  CAS  Google Scholar 

  24. Kondos GT, Hoff JA, Sevrukov A, Daviglus ML, Garside DB, Devries SS, et al. Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation. 2003;107:2571–6.

    Article  PubMed  Google Scholar 

  25. Arad Y, Spadaro LA, Goodman K, Newstein D, Guerci AD. Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol. 2000;36:1253–60.

    Article  PubMed  CAS  Google Scholar 

  26. Raggi P, Gongora MC, Gopal A, Callister TQ, Budoff M, Shaw LJ. Coronary artery calcium to predict all-cause mortality in elderly men and women. J Am Coll Cardiol. 2008;52:17–23.

    Article  PubMed  Google Scholar 

  27. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology. 2003;228:826–33.

    Article  PubMed  Google Scholar 

  28. • Jacobs PC, Prokop M, van der Graaf Y, Gondrie MJ, Janssen KJ, de Koning HJ, et al. Comparing coronary artery calcium and thoracic aorta calcium for prediction of all-cause mortality and cardiovascular events on low-dose nongated computed tomography in a high-risk population of heavy smokers. Atherosclerosis. 2010;209:455–62. This study reported on the use of low dose, ungated CT scans to measure vascular calcification in the coronary arteries and the aorta in a population of heavey smokers, who are at hight risk for both CVD and lung cancer. Therefore, it may be useful to screen for CVD risk using vascular calcium in these patients t the same time as lung cancer testing.

    Article  PubMed  CAS  Google Scholar 

  29. Allison MA, Hsi S, Wassel CL, Morgan C, Ix JH, Wright CM, et al. Calcified atherosclerosis in different vascular beds and the risk of mortality. ArteriosclThromb Vasc Biol. 2012;32:140–6.

    Article  CAS  Google Scholar 

  30. Allison MA, Budoff MJ, Nasir K, Wong ND, Detrano R, Kronmal R, et al. Ethnic-specific risks for atherosclerotic calcification of the thoracic and abdominal aorta (from the Multi-Ethnic Study of Atherosclerosis). Am J Cardiol. 2009;104:812–7.

    Article  PubMed  Google Scholar 

  31. Saremi A, Moritz TE, Anderson RJ, Abraira C, Duckworth WC, Reaven PD. Rates and determinants of coronary and abdominal aortic artery calcium progression in the Veterans Affairs Diabetes Trial (VADT). Diabetes Care. 2010;33:2642–7.

    Article  PubMed  CAS  Google Scholar 

  32. Bastos Goncalves F, Voute MT, Hoeks SE, Chonchol MB, Boersma EE, Stolker RJ, et al. Calcification of the abdominal aorta as an independent predictor of cardiovascular events: a meta-analysis. Heart. 2012;98:988–94.

    Article  PubMed  Google Scholar 

  33. Starkman HS, Cable G, Hala V, Hecht H, Donnelly CM. Delineation of prevalence and risk factors for early coronary artery disease by electron beam computed tomography in young adults with type 1 diabetes. Diabetes Care. 2003;26:433–6.

    Article  PubMed  Google Scholar 

  34. Arad Y, Newstein D, Cadet F, Roth M, Guerci AD. Association of multiple risk factors and insulin resistance with increased prevalence of asymptomatic coronary artery disease by an electron-beam computed tomographic study. ArteriosclThromb Vasc Biol. 2001;21:2051–8.

    Article  CAS  Google Scholar 

  35. Matsumoto K, Sera Y, Abe Y, Ueki Y, Tominaga T, Miyake S. Inflammation and insulin resistance are independently related to all-cause of death and cardiovascular events in Japanese patients with type 2 diabetes mellitus. Atherosclerosis. 2003;169:317–21.

    Article  PubMed  CAS  Google Scholar 

  36. Mehta NN, Krishnamoorthy P, Martin SS, St Clair C, Schwartz S, Iqbal N, et al. Usefulness of insulin resistance estimation and the metabolic syndrome in predicting coronary atherosclerosis in type 2 diabetes mellitus. Am J Cardiol. 2011;107:406–11.

    Article  PubMed  CAS  Google Scholar 

  37. Al-Aly Z. Medial vascular calcification in diabetes mellitus and chronic kidney disease: the role of inflammation. Cardiovasc Hematol Disord Drug Targets. 2007;7:1–6.

    Article  PubMed  CAS  Google Scholar 

  38. Schurgin S, Rich S, Mazzone T. Increased prevalence of significant coronary artery calcification in patients with diabetes. Diabetes Care. 2001;24:335–8.

    Article  PubMed  CAS  Google Scholar 

  39. Mielke CH, Shields JP, Broemeling LD. Coronary artery calcium, coronary artery disease, and diabetes. Diabetes Res Clin Pract. 2001;53:55–61.

    Article  PubMed  CAS  Google Scholar 

  40. Kronmal RA, McClelland RL, Detrano R, Shea S, Lima JA, Cushman M, et al. Risk factors for the progression of coronary artery calcification in asymptomatic subjects: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2007;115:2722–30.

    Article  PubMed  Google Scholar 

  41. Scholte AJ, Schuijf JD, Kharagjitsingh AV, Jukema JW, Pundziute G, van der Wall EE, et al. Prevalence of coronary artery disease and plaque morphology assessed by multi-slice computed tomography coronary angiography and calcium scoring in asymptomatic patients with type 2 diabetes. Heart. 2008;94:290–5.

    Article  PubMed  CAS  Google Scholar 

  42. Reaven PD, Sacks J. Coronary artery and abdominal aortic calcification are associated with cardiovascular disease in type 2 diabetes. Diabetologia. 2005;48:379–85.

    Article  PubMed  CAS  Google Scholar 

  43. Ibebuogu UN, Nasir K, Gopal A, Ahmadi N, Mao SS, Young E, et al. Comparison of atherosclerotic plaque burden and composition between diabetic and non diabetic patients by non invasive CT angiography. Int J Cardiovasc Imaging. 2009;25:717–23.

    Google Scholar 

  44. • Dayan A, Narin B, Biteker M, Aksoy S, Fotbolcu H, Duman D. Coronary calcium score, albuminuria, and inflammatory markers in type 2 diabetic patients: Associations and prognostic implications. Diabetes Res Clin Pract. 2012;98(1):98–103. In this prospective cohort study, the association of renal function as measured by albumin excretion reate and uric acid as a measure of inflammation were investigated in relationship with CAC and CVD. Both inflammation and urinary albumin were associated with higher CAC score and CVD events.

  45. Elkeles RS, Godsland IF, Feher MD, Rubens MB, Roughton M, Nugara F, et al. Coronary calcium measurement improves prediction of cardiovascular events in asymptomatic patients with type 2 diabetes: the PREDICT study. Eur Heart J. 2008;29:2244–51.

    Article  PubMed  CAS  Google Scholar 

  46. • Lau KK, Wong YK, Chan YH, Yiu KH, Teo KC, Li LS, et al. Prognostic implications of surrogate markers of atherosclerosis in low to intermediate risk patients with Type 2 Diabetes. Cardiovasc Diabetol. 2012;11:101. This study demonstrated that CAC score ws a better predictor of CVD than the Framingham Risk Score, and was independent of other known risk factors.

    Article  PubMed  Google Scholar 

  47. •• Malik S, Budoff MJ, Katz R, Blumenthal RS, Bertoni AG, Nasir K, et al. Impact of subclinical atherosclerosis on cardiovascular disease events in individuals with metabolic syndrome and diabetes: the multi-ethnic study of atherosclerosis. Diabetes Care. 2011;34:2285–90. The MESA study is a large, prospective cohort study designed to examine atherosclerosis risks in people with the metabolic syndrome or diabetes, across racial groups. In the paper, the utility of CAC score was compared with carotid intima media thickness (cIMT) in predicting CVD, and it was demonstrated that CAC score added incremental information to both known risk factors and cIMT.

    Article  PubMed  Google Scholar 

  48. Olson JC, Edmundowicz D, Becker DJ, Kuller LH, Orchard TJ. Coronary calcium in adults with type 1 diabetes: a stronger correlate of clinical coronary artery disease in men than in women. Diabetes. 2000;49:1571–8.

    Article  PubMed  CAS  Google Scholar 

  49. Raggi P, Shaw LJ, Berman DS, Callister TQ. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol. 2004;43:1663–9.

    Article  PubMed  CAS  Google Scholar 

  50. Bostrom K, Watson KE, Horn S, Wortham C, Herman IM, Demer LL. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest. 1993;91:1800–9. doi:10.1172/JCI116391.

    Article  PubMed  CAS  Google Scholar 

  51. Bostrom KI, Jumabay M, Matveyenko A, Nicholas SB, Yao Y. Activation of vascular bone morphogenetic protein signaling in diabetes mellitus. Circ Res. 2011;108:446–57.

    Article  PubMed  Google Scholar 

  52. Selisko B, Potisopon S, Agred R, Priet S, Varlet I, Thillier Y, et al. Molecular basis for nucleotide conservation at the ends of the dengue virus genome. PLoS Pathogens. 2012;8:e1002912. doi:10.1371/journal.ppat.1002912.

    Article  PubMed  CAS  Google Scholar 

  53. Abazov VM, Abbott B, Acharya BS, Adams M, Adams T, Alexeev GD, et al. Precise measurement of the top quark mass in the dilepton channel at D0. Phys Rev Lett. 2011;107:082004.

    Article  PubMed  Google Scholar 

  54. Mizouni H, Mrabet D, Fourati M, Khemiri C, Hedhli M, Jrad M, et al. [Apophysitis of the ischial tuberosity mimicking a neoplasm]. La Tunisie Medicale. 2012;90:496–8.

    PubMed  Google Scholar 

  55. Liu XW, Xie CM, Mo YX, Zhang R, Li H, Huang ZL, et al. Magnetic resonance imaging features of nasopharyngeal carcinoma and nasopharyngeal non-Hodgkin’s lymphoma: are there differences? Eur J Radiol. 2012;81:1146–54. doi:10.1016/j.ejrad.2011.03.066.

    Article  PubMed  Google Scholar 

  56. Lv P, Fang W, Geng X, Yang Q, Li Y, Sha L. Therapeutic neuroprotective effects of ginkgolide B on cortex and basal ganglia in a rat model of transient focal ischemia. Eur J Pharm Sci. 2011;44:235–40. doi:10.1016/j.ejps.2011.07.014.

    Article  PubMed  CAS  Google Scholar 

  57. Proudfoot D, Davies JD, Skepper JN, Weissberg PL, Shanahan CM. Acetylated low-density lipoprotein stimulates human vascular smooth muscle cell calcification by promoting osteoblastic differentiation and inhibiting phagocytosis. Circulation. 2002;106:3044–50.

    Article  PubMed  CAS  Google Scholar 

  58. Parhami F, Morrow AD, Balucan J, Leitinger N, Watson AD, Tintut Y, et al. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscl Thromb Vasc Biol. 1997;17:680–7.

    Article  PubMed  CAS  Google Scholar 

  59. Geng Y, Hsu JJ, Lu J, Ting TC, Miyazaki M, Demer LL, et al. Role of cellular cholesterol metabolism in vascular cell calcification. J Biol Chem. 2011;286:33701–6. doi:10.1074/jbc.M111.269639.

    Article  PubMed  CAS  Google Scholar 

  60. Watson KE, Abrolat ML, Malone LL, Hoeg JM, Doherty T, Detrano R, et al. Active serum vitamin D levels are inversely correlated with coronary calcification. Circulation. 1997;96:1755–60.

    Article  PubMed  CAS  Google Scholar 

  61. Young KA, Snell-Bergeon JK, Naik RG, Hokanson JE, Tarullo D, Gottlieb PA, et al. Vitamin D deficiency and coronary artery calcification in subjects with type 1 diabetes. Diabetes Care. 2011;34:454–8.

    Article  PubMed  CAS  Google Scholar 

  62. Chang JH, Ro H, Kim S, Lee HH, Chung W, Jung JY. Study on the relationship between serum 25-hydroxyvitamin D levels and vascular calcification in hemodialysis patients with consideration of seasonal variation in vitamin D levels. Atherosclerosis. 2012;220:563–8.

    Article  PubMed  CAS  Google Scholar 

  63. Joergensen C, Reinhard H, Schmedes A, Hansen PR, Wiinberg N, Petersen CL, et al. Vitamin D levels and asymptomatic coronary artery disease in type 2 diabetic patients with elevated urinary albumin excretion rate. Diabetes Care. 2012;35:168–72.

    Article  PubMed  CAS  Google Scholar 

  64. Effect of intensive diabetes treatment on nerve conduction in the Diabetes Control and Complications Trial. Ann Neurol. 1995;38:869–80.

  65. Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. The Diabetes Control and Complications (DCCT) Research Group. Kid Int. 1995;47:1703–20.

  66. The effect of intensive diabetes treatment on the progression of diabetic retinopathy in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial. Arch Ophthalmol. 1995;113:36–51.

  67. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA. 2002;287:2563–9.

  68. Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141:421–31.

    Article  PubMed  CAS  Google Scholar 

  69. Turner RC, Millns H, Neil HA, Stratton IM, Manley SE, Matthews DR, et al. Risk factors for coronary artery disease in noninsulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ. 1998;316:823–8.

    Article  PubMed  CAS  Google Scholar 

  70. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353:2643–53.

    Article  PubMed  Google Scholar 

  71. Skyler JS, Bergenstal R, Bonow RO, Buse J, Deedwania P, Gale EA, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care. 2009;32:187–92.

    Article  PubMed  Google Scholar 

  72. Gammie SC, D’Anna KL, Gerstein H, Stevenson SA. Neurotensin inversely modulates maternal aggression. Neuroscience. 2009;158:1215–23. doi:10.1016/j.neuroscience.2008.11.045.

    Article  PubMed  CAS  Google Scholar 

  73. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.

    Article  PubMed  CAS  Google Scholar 

  74. • Schauer IE, Snell-Bergeon JK, Bergman BC, Maahs DM, Kretowski A, Eckel RH, et al. Insulin resistance, defective insulin-mediated fatty acid suppression, and coronary artery calcification in subjects with and without type 1 diabetes: The CACTI study. Diabetes. 2011;60:306–14. This study investigated insulin resistance as a feature of type 1 diabetes and as a predictor of subclinical atherosclerosis. In one of the few studies applying the gold standard clamp technique in a cohort of adults with type 1 diabetes and nondiabetic controls of similar age, gender, weight, and adiposity, it was reported that adults with type 1 diabetes are half as insulin sensitive as nondiabetic adults, and the degree of insulin resistance was associatedw ith the extent and progression of CAC.

    Article  PubMed  CAS  Google Scholar 

  75. Rodrigues TC, Veyna AM, Haarhues MD, Kinney GL, Rewers M, Snell-Bergeon JK. Obesity and coronary artery calcium in diabetes: the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study. Diabetes Technol Ther. 2011;13:991–6.

    Article  PubMed  CAS  Google Scholar 

  76. Conway B, Miller RG, Costacou T, Fried L, Kelsey S, Evans RW, et al. Double-edged relationship between adiposity and coronary artery calcification in type 1 diabetes. Diabetes Vasc Dis Res. 2007;4:332–9.

    Article  Google Scholar 

  77. Mulnier HE, Seaman HE, Raleigh VS, Soedamah-Muthu SS, Colhoun HM, Lawrenson RA. Mortality in people with type 2 diabetes in the UK. Diabet Med. 2006;23:516–21.

    Article  PubMed  CAS  Google Scholar 

  78. Hegazi RA, Sutton-Tyrrell K, Evans RW, Kuller LH, Belle S, Yamamoto M, et al. Relationship of adiposity to subclinical atherosclerosis in obese patients with type 2 diabetes. Obes Res. 2003;11:1597–605.

    Article  PubMed  Google Scholar 

  79. • Kim TH, Yu SH, Choi SH, Yoon JW, Kang SM, Chun EJ, et al. Pericardial fat amount is an independent risk factor of coronary artery stenosis assessed by multidetector-row computed tomography: the Korean Atherosclerosis Study 2. Obesity. 2011;19:1028–34. Pericardial fat is a newly recognized potential risk factor for CVD, and this study found that this fat depot in association with stenosis of the coronary arteries.

    Article  PubMed  Google Scholar 

  80. • Liu J, Fox CS, Hickson D, Sarpong D, Ekunwe L, May WD, et al. Pericardial adipose tissue, atherosclerosis, and cardiovascular disease risk factors: the Jackson heart study. Diabetes Care. 2010;33:1635–9. The association between pericardial fat and vascular calcification in the coronary arteries and abdominal aorta was investigated in the Jackson Heart Study, which included over 1400 African Americans. The amount of pericardial adipose tissue was significantly associated with CAC.

    Article  PubMed  CAS  Google Scholar 

  81. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation. 2008;117:605–13.

    Article  PubMed  Google Scholar 

  82. Yerramasu A, Dey D, Venuraju S, Anand DV, Atwal S, Corder R, et al. Increased volume of epicardial fat is an independent risk factor for accelerated progression of sub-clinical coronary atherosclerosis. Atherosclerosis. 2012;220:223–30.

    Article  PubMed  CAS  Google Scholar 

  83. Weir MR. Recognizing the link between chronic kidney disease and cardiovascular disease. Am J Manag Care. 2011;17 Suppl 15:S396–402.

    PubMed  Google Scholar 

  84. Li L, Dutra A, Pak E, Labrie 3rd JE, Gerstein RM, Pandolfi PP, et al. EGFRvIII expression and PTEN loss synergistically induce chromosomal instability and glial tumors. Neurooncology. 2009;11:9–21. doi:10.1215/15228517-2008-081.

    Google Scholar 

  85. Riegger T, Conrad S, Schluesener HJ, Kaps HP, Badke A, Baron C, et al. Immune depression syndrome following human spinal cord injury (SCI): a pilot study. Neuroscience. 2009;158:1194–9. doi:10.1016/j.neuroscience.2008.08.021.

    Article  PubMed  CAS  Google Scholar 

  86. • Budoff MJ, Rader DJ, Reilly MP, Mohler 3rd ER, Lash J, Yang W, et al. Relationship of estimated GFR and coronary artery calcification in the CRIC (Chronic Renal Insufficiency Cohort) Study. Am J Kidney Dis. 2011;58:519–26. This manuscript by Budoff and colleagues is one of the first to examine associations between estimated glomerular filtration rate (eGFR) and coronary artery calcification, in a population of adults with and without diabetes. The finding that eGFR was associated in a step-wise manner with CAC score is novel and adds to our understanding of the relationship of renal function and vascular calcification.

  87. Zhang ZD, Rozowsky J, Snyder M, Chang J, Gerstein M. Modeling ChIP sequencing in silico with applications. PLoS Comput Biol. 2008;4:e1000158. doi:10.1371/journal.pcbi.1000158.

    Article  PubMed  Google Scholar 

  88. Sasidharan R, Gerstein M. Genomics: protein fossils live on as RNA. Nature. 2008;453:729–31. doi:10.1038/453729a.

    Article  PubMed  CAS  Google Scholar 

  89. Maahs DM, Kinney GL, Wadwa P, Snell-Bergeon JK, Dabelea D, Hokanson J, et al. Hypertension prevalence, awareness, treatment, and control in an adult type 1 diabetes population and a comparable general population. Diabetes Care. 2005;28:301–6.

    Article  PubMed  Google Scholar 

  90. Lawler FH, Viviani N. Patient and physician perspectives regarding treatment of diabetes: compliance with practice guidelines. J Fam Pract. 1997;44:369–73.

    PubMed  CAS  Google Scholar 

  91. Currie CJ, Peyrot M, Morgan CL, Poole CD, Jenkins-Jones S, Rubin RR, et al. The impact of treatment noncompliance on mortality in people with type 1 diabetes. J Diabetes Complications. 2012. doi:10.1016/j.jdiacomp.2012.10.006.

  92. Blaha M, Budoff MJ, Shaw LJ, Khosa F, Rumberger JA, Berman D, et al. Absence of coronary artery calcification and all-cause mortality. JACC Cardiovascular Imaging. 2009;2:692–700. doi:10.1016/j.jcmg.2009.03.009.

    Article  PubMed  Google Scholar 

  93. Seringhaus M, Rozowsky J, Royce T, Nagalakshmi U, Jee J, Snyder M, et al. Mismatch oligonucleotides in human and yeast: guidelines for probe design on tiling microarrays. BMC Genomics. 2008;9:635. doi:10.1186/1471-2164-9-635.

    Article  PubMed  Google Scholar 

  94. He ZX, Hedrick TD, Pratt CM, Verani MS, Aquino V, Roberts R, et al. Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation. 2000;101:244–51.

    Article  PubMed  CAS  Google Scholar 

  95. Moser KW, O’Keefe Jr JH, Bateman TM, McGhie IA. Coronary calcium screening in asymptomatic patients as a guide to risk factor modification and stress myocardial perfusion imaging. J Nucl Cardiol. 2003;10:590–8.

    Article  PubMed  Google Scholar 

  96. Choi YH, Hong YJ, Park IH, Jeong MH, Ahmed K, Hwang SH, et al. Relationship between coronary artery calcium score by multidetector computed tomography and plaque components by virtual histology intravascular ultrasound. J Korean Med Sci. 2011;26:1052–60. doi:10.3346/jkms.2011.26.8.1052.

    Article  PubMed  Google Scholar 

  97. Houslay ES, Cowell SJ, Prescott RJ, Reid J, Burton J, Northridge DB, et al. Progressive coronary calcification despite intensive lipid-lowering treatment: a randomized controlled trial. Heart. 2006;92:1207–12. doi:10.1136/hrt.2005.080929.

    Article  PubMed  CAS  Google Scholar 

  98. Terry JG, Carr JJ, Kouba EO, Davis DH, Menon L, Bender K, et al. Effect of simvastatin (80 mg) on coronary and abdominal aortic arterial calcium (from the coronary artery calcification treatment with zocor [CATZ] study). Am J Cardiol. 2007;99:1714–7. doi:10.1016/j.amjcard.2007.01.060.

    Article  PubMed  CAS  Google Scholar 

  99. Saremi A, Bahn G, Reaven PD. Progression of vascular calcification is increased with statin use in the Veterans Affairs 7Diabetes Trial (VADT). Diabetes Care. 2012;35(11):2390–2.

    Google Scholar 

  100. Kiramijyan S, Ahmadi N, Isma’eel H, Flores F, Shaw LJ, Raggi P, et al. Impact of coronary artery calcium progression and statin therapy on clinical outcome in subjects with and without diabetes mellitus. Am J Cardiol. 2013;111:356–61. doi:10.1016/j.amjcard.2012.09.033.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

Janet K. Snell-Bergeon declares that she has no conflict of interest.

Matthew J Budoff declares that he has no conflict of interest.

John E. Hokanson declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet K. Snell-Bergeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snell-Bergeon, J.K., Budoff, M.J. & Hokanson, J.E. Vascular Calcification in Diabetes: Mechanisms and Implications. Curr Diab Rep 13, 391–402 (2013). https://doi.org/10.1007/s11892-013-0379-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-013-0379-7

Keywords

Navigation