Skip to main content

Advertisement

Log in

Autologous Regulatory T Cells for the Treatment of Type 1 Diabetes

  • Transplantation (A Pileggi, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The immune system is tasked with defending the host from a wide array of pathogens and environmental insults. When uncontrolled, this endeavor may lead to off-target reactivity to self-tissues resulting in multiple autoimmune diseases including type 1 diabetes (T1D). This multifactorial disease process involves over 40 susceptibility genes and is influenced by poorly characterized environmental factors. While many questions regarding the pathogenesis of the disease process remain, it has become increasingly clear that the progression to disease results from a breakdown in the processes that maintain peripheral immune tolerance. The end result of this process is localized tissue inflammation, islet dysfunction, and ultimately the destruction of pancreatic β cells due to concomitant defects in innate and adaptive immune responses. A number of immunomodulatory intervention trials have now been conducted in patients at risk for or with recent onset T1D, often with the goal of restoring immune tolerance by inducing regulatory T cells (Tregs). Unfortunately, many of these trials have fallen short of inducing persistent immune regulation. This shortfall has led to additional efforts to more directly shift the balance from destructive effector T cell (Teff) responses to favor Tregs, including the use of autologous Treg cell therapy. In this review we will discuss key concepts related to the use of autologous Treg cell therapy for the treatment of T1D. Among these topics, we will discuss the notions of genetic control of Treg activity, Treg cellular plasticity, and requirements for antigen-specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet. 2001;358:221–9.

    Article  PubMed  CAS  Google Scholar 

  2. Wicker LS, Miller BJ, Mullen Y. Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice. Diabetes. 1986;35:855–60.

    Article  PubMed  CAS  Google Scholar 

  3. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7.

    Article  PubMed  CAS  Google Scholar 

  4. Patterson CC, Gyurus E, Rosenbauer J, Cinek O, Neu A, Schober E, et al. Trends in childhood type 1 diabetes incidence in Europe during 1989-2008: evidence of non-uniformity over time in rates of increase. Diabetologia. 2012;55:2142–7.

    Google Scholar 

  5. Matthews JB, Staeva TP, Bernstein PL, Peakman M, von Herrath M. Developing combination immunotherapies for type 1 diabetes: recommendations from the ITN-JDRF Type 1 Diabetes Combination Therapy Assessment Group. Clin Exp Immunol. 2010;160:176–84.

    Article  PubMed  CAS  Google Scholar 

  6. Bach JF. Autoimmune diseases as the loss of active “self-control. Ann NY Acad Sci. 2003;998:161–77.

    Article  PubMed  CAS  Google Scholar 

  7. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. NatGenet. 2001;27:20–1.

    CAS  Google Scholar 

  8. Moraes-Vasconcelos D, Costa-Carvalho BT, Torgerson TR, Ochs HD. Primary immune deficiency disorders presenting as autoimmune diseases: IPEX and APECED. J Clin Immunol. 2008;28 Suppl 1:S11–9.

    Article  PubMed  CAS  Google Scholar 

  9. Keenan HA, Sun JK, Levine J, Doria A, Aiello LP, Eisenbarth G, et al. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes. 2010;59:2846–53.

    Article  PubMed  CAS  Google Scholar 

  10. von Herrath M, Sanda S, Herold K. Type 1 diabetes as a relapsing-remitting disease? Nat Rev Immunol. 2007;7:988–94.

    Article  Google Scholar 

  11. Bluestone JA, Tang Q. Therapeutic vaccination using CD4 + CD25+ antigen-specific regulatory T cells. Proc Natl Acad Sci USA. 2004;101 suppl 2.14622–6.

    Google Scholar 

  12. Brusko TM, Putnam AL, Bluestone JA. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev. 2008;223:371–90.

    Article  PubMed  CAS  Google Scholar 

  13. Brusko T, Atkinson M. Treg in type 1 diabetes. Cell Biochem Biophys. 2007;48:165–75.

    Article  PubMed  CAS  Google Scholar 

  14. • Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol. 2009;155:173–81. This study highlights the lack of Treg in heavily inflamed islets of recent onset T1D patients, analyzed post mortem.

    Article  PubMed  CAS  Google Scholar 

  15. •• Coppieters KT, Dotta F, Amirian N, Campbell PD, Kay TW, Atkinson MA, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209:51–60. The first comprehensive study with patient samples showing islet-autoreactive T cells associated with β cell destruction. This study also highlights the heterogenous and chronic disease course of T1D.

    Article  PubMed  CAS  Google Scholar 

  16. • Ferraro A, Socci C, Stabilini A, Valle A, Monti P, Piemonti L, et al. Expansion of Th17 cells and functional defects in T regulatory cells are key features of the pancreatic lymph nodes in patients with type 1 diabetes. Diabetes. 2011;60:2903–13. This study shows that Treg in pancreatic-draining lymph nodes of T1D patients have a Th17-cell bias highlighting an underlying dysfunction of Treg in T1D.

    Article  PubMed  CAS  Google Scholar 

  17. • Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M, et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol. 2009;10:1000–7. This study shows that Treg in pancreatic-draining lymph nodes of T1D patients have a Th17-cell bias highlighting an underlying dysfunction of Treg in T1D.

    Article  PubMed  CAS  Google Scholar 

  18. Vang KB, Yang J, Mahmud SA, Burchill MA, Vegoe AL, Farrar MA. IL-2, -7, and -15, but not thymic stromal lymphopoeitin, redundantly govern CD4 + Foxp3+ regulatory T cell development. J Immunol. 2008;181:3285–90.

    PubMed  CAS  Google Scholar 

  19. Zhou X, Bailey-Bucktrout S, Jeker LT, Bluestone JA. Plasticity of CD4(+) FoxP3(+) T cells. Curr Opin Immunol. 2009;21:281–5.

    Article  PubMed  CAS  Google Scholar 

  20. • Yang XP, Ghoreschi K, Steward-Tharp SM, Rodriguez-Canales J, Zhu J, Grainger JR, et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol. 2011;12:247–54. This study provides a mechanism, which may link IL-2 dysfunction with Treg/Th17 cell imabalance.

    Article  PubMed  CAS  Google Scholar 

  21. Marwaha AK, Crome SQ, Panagiotopoulos C, Berg KB, Qin H, Ouyang Q, et al. Cutting edge: increased IL-17-secreting T cells in children with new-onset type 1 diabetes. J Immunol. 2010;185:3814–8.

    Article  PubMed  CAS  Google Scholar 

  22. •• McClymont SA, Putnam AL, Lee MR, Esensten JH, Liu W, Hulme MA, et al. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol. 2011;186:3918–26. This study characterized a population of dysfunctional adaptive Tregs capable of producing IFNγ in patients with T1D.

    Article  PubMed  CAS  Google Scholar 

  23. Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol. 2010;184:3433–41.

    Article  PubMed  CAS  Google Scholar 

  24. •• Baron U, Floess S, Wieczorek G, Baumann K, Grutzkau A, Dong J, et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur J Immunol. 2007;37:2378–89. One of seminal discoveries on how to differentiate between cells with transient expression of FoxP3 vs long-term expression.

    Article  PubMed  CAS  Google Scholar 

  25. Bailey-Bucktrout SL, Bluestone JA. Regulatory T cells: stability revisited. Trends Immunol. 2011;32:301–6.

    Article  PubMed  CAS  Google Scholar 

  26. Shoda LK, Young DL, Ramanujan S, Whiting CC, Atkinson MA, Bluestone JA, et al. A Comprehensive Review of Interventions in the NOD Mouse and Implications for Translation. Immunity. 2005;23:115–26.

    Article  PubMed  CAS  Google Scholar 

  27. Bes M, Sauleda S, Casamitjana N, Piron M, Campos-Varela I, Quer J, et al. Reversal of nonstructural protein 3-specific CD4(+) T cell dysfunction in patients with persistent hepatitis C virus infection. J Viral Hepat. 2012;19:283–94.

    Article  PubMed  CAS  Google Scholar 

  28. Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol. 2009;21:233–40.

    Article  PubMed  CAS  Google Scholar 

  29. Chatenoud L. Use of CD3 antibodies in transplantation and autoimmune diseases. Transplant Proc. 1994;26:3191–3.

    PubMed  CAS  Google Scholar 

  30. Parker MJ, Xue S, Alexander JJ, Wasserfall CH, Campbell-Thompson ML, Battaglia M, et al. Immune depletion with cellular mobilization imparts immunoregulation and reverses autoimmune diabetes in nonobese diabetic mice. Diabetes. 2009;58:2277–84.

    Article  PubMed  CAS  Google Scholar 

  31. Herold KC, Gitelman S, Greenbaum C, Puck J, Hagopian W, Gottlieb P, et al. Treatment of patients with new onset type 1 diabetes with a single course of anti-CD3 mAb Teplizumab preserves insulin production for up to 5 years. Clin Immunol. 2009;132:166–73.

    Article  PubMed  CAS  Google Scholar 

  32. Herold KC, Gitelman SE, Masharani U, Hagopian W, Bisikirska B, Donaldson D, et al. A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes. 2005;54:1763–9.

    Article  PubMed  CAS  Google Scholar 

  33. Herold KC, Hagopian W, Auger JA, Poumian-Ruiz E, Taylor L, Donaldson D, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med. 2002;346:1692–8.

    Article  PubMed  CAS  Google Scholar 

  34. • Penaranda C, Tang Q, Bluestone JA. Anti-CD3 therapy promotes tolerance by selectively depleting pathogenic cells while preserving regulatory T cells. J Immunol. 2011;187:2015–22. This study demonstrated anti-CD3 restored balance between Teff and Treg in T1D in NOD mice.

    Article  PubMed  CAS  Google Scholar 

  35. Grinberg-Bleyer Y, Baeyens A, You S, Elhage R, Fourcade G, Gregoire S, et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med. 2010;207:1871–8.

    Article  PubMed  CAS  Google Scholar 

  36. Hester J, Schiopu A, Nadig SN, Wood KJ. Low-dose rapamycin treatment increases the ability of human regulatory t cells to inhibit transplant arteriosclerosis in vivo. Am J Transplant. 2012. doi:10.1111/j.1600-6143.2012.04065x.

  37. Yi S, Ji M, Wu J, Ma X, Phillips P, Hawthorne WJ, et al. Adoptive transfer with in vitro expanded human regulatory t cells protects against porcine islet xenograft rejection via interleukin-10 in humanized mice. Diabetes. 2012;61:1180–91.

    Google Scholar 

  38. Davidson TS, Shevach EM. Polyclonal Treg cells modulate T effector cell trafficking. Eur J Immunol. 2011;41:2862–70.

    Article  PubMed  CAS  Google Scholar 

  39. • Putnam AL, Brusko TM, Lee MR, Liu W, Szot GL, Ghosh T, et al. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes. 2009;58:652–62. This study provided the methodology to isolate, expand, and characterize human Tregs for adoptive cell therapy in T1D.

    Article  PubMed  CAS  Google Scholar 

  40. Polychronakos C, Li Q. Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet. 2011;12:781–92.

    Article  PubMed  CAS  Google Scholar 

  41. Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P, et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes. 2008;57:1084–92.

    Article  PubMed  CAS  Google Scholar 

  42. Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 1987;329:599–604.

    Article  PubMed  CAS  Google Scholar 

  43. Corper AL, Stratmann T, Apostolopoulos V, Scott CA, Garcia KC, Kang AS, et al. A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. Science. 2000;288:505–11.

    Article  PubMed  CAS  Google Scholar 

  44. Barratt BJ, Payne F, Lowe CE, Hermann R, Healy BC, Harold D, et al. Remapping the insulin gene/IDDM2 locus in type 1 diabetes. Diabetes. 2004;53:1884–9.

    Article  PubMed  CAS  Google Scholar 

  45. Pugliese A, Zeller M, Fernandez A, Zalcberg LJ, Bartlett RJ, Ricordi C, et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet. 1997;15:293–7.

    Article  PubMed  CAS  Google Scholar 

  46. Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, Goodyer CG, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet. 1997;15:289–92.

    Article  PubMed  CAS  Google Scholar 

  47. Thornton AM, Piccirillo CA, Shevach EM. Activation requirements for the induction of CD4 + CD25+ T cell suppressor function. Eur J Immunol. 2004;34:366–76.

    Article  PubMed  CAS  Google Scholar 

  48. Penaranda C, Bluestone JA. Is antigen specificity of autoreactive T cells the key to islet entry? Immunity. 2009;31:534–6.

    Article  PubMed  CAS  Google Scholar 

  49. Lennon GP, Bettini M, Burton AR, Vincent E, Arnold PY, Santamaria P, et al. T cell islet accumulation in type 1 diabetes is a tightly regulated, cell-autonomous event. Immunity. 2009;31:643–53.

    Article  PubMed  CAS  Google Scholar 

  50. • Brusko TM, Koya RC, Zhu S, Lee MR, Putnam AL, McClymont SA, et al. Human antigen-specific regulatory T cells generated by T cell receptor gene transfer. PLoS One. 2010;5:e11726. The first demonstration of human TCR gene transfer to human Tregs.

    Article  PubMed  Google Scholar 

  51. Montane J, Bischoff L, Soukhatcheva G, Dai DL, Hardenberg G, Levings MK, et al. Prevention of murine autoimmune diabetes by CCL22-mediated Treg recruitment to the pancreatic islets. J Clin Invest. 121:3024–8.

  52. Larkin J, Picca CC, Caton AJ. Activation of CD4+ CD25+ regulatory T cell suppressor function by analogs of the selecting peptide. Eur J Immunol. 2007;37:139–46.

    Article  PubMed  CAS  Google Scholar 

  53. Burren OS, Adlem EC, Achuthan P, Christensen M, Coulson RM, Todd JA. T1DBase: update 2011, organization and presentation of large-scale data sets for type 1 diabetes research. Nucleic Acids Res. 2011;39:D997–D1001.

    Article  PubMed  Google Scholar 

  54. Hsieh CS, Lee HM, Lio CW. Selection of regulatory T cells in the thymus. Nat Rev Immunol. 2012;12:157–67.

    PubMed  CAS  Google Scholar 

  55. Moran AE, Holzapfel KL, Xing Y, Cunningham NR, Maltzman JS, Punt J, et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med. 2011;208:1279–89.

    Article  PubMed  CAS  Google Scholar 

  56. Burn GL, Svensson L, Sanchez-Blanco C, Saini M, Cope AP. Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Lett. 2011;585:3689–98.

    Article  PubMed  CAS  Google Scholar 

  57. • Zhang J, Zahir N, Jiang Q, Miliotis H, Heyraud S, Meng X, et al. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat Genet. 2011;43:902–7. The authors knocked-in R619W, a mutation equivalent to R620W, into Pep, the murine homolog of Lyp, which resulted in hyperactivated T cells and increased degradation of Pep and Lyp in mice and humans, respectively.

    Article  PubMed  CAS  Google Scholar 

  58. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature. 2007;445:931–5.

    Article  PubMed  CAS  Google Scholar 

  59. •• Maine CJ, Hamilton-Williams EE, Cheung J, Stanford SM, Bottini N, Wicker LS, et al. PTPN22 Alters the Development of regulatory T cells in the thymus. J Immunol. 2012;188:5267–75. A direct functional effect of Ptpn22 in Tregs is described in this study, such that its expression was markedly upregulated in thymic Treg precursors and its deficiency resulted in an increased proportion nTregs.

    Article  PubMed  CAS  Google Scholar 

  60. Cheng G, Yu A, Malek TR. T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunol Rev. 2011;241:63–76.

    Article  PubMed  CAS  Google Scholar 

  61. Malek TR, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity. 2010;33:153–65.

    Article  PubMed  CAS  Google Scholar 

  62. Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol. 2077;178:280–90.

    Google Scholar 

  63. Doody KM, Bourdeau A, Tremblay ML. T-cell protein tyrosine phosphatase is a key regulator in immune cell signaling: lessons from the knockout mouse model and implications in human disease. Immunol Rev. 2009;228:325–41.

    Article  PubMed  CAS  Google Scholar 

  64. •• Garg G, Tyler JR, Yang JH, Cutler AJ, Downes K, Pekalski M, et al. Type 1 diabetes-associated IL2RA variation lowers IL-2 signaling and contributes to diminished CD4+CD25+ regulatory T cell function. J Immunol. 2012;188:4644–53. A functional effect of the T1D associated IL2RA variant is shown to impact human Tregs, resulting in diminished IL-2R signaling and abrogated suppression.

    Article  PubMed  CAS  Google Scholar 

  65. • Long SA, Cerosaletti K, Wan JY, Ho JC, Tatum M, Wei S, et al. An autoimmune-associated variant in PTPN2 reveals an impairment of IL-2R signaling in CD4(+) T cells. Genes Immun. 2011;12:116–25. The T1D-associated variant of PTPN2 is shown to result in decreased IL-2R signal and FOXP3 expression.

    Article  PubMed  CAS  Google Scholar 

  66. Scalapino KJ, Daikh DI. CTLA-4: a key regulatory point in the control of autoimmune disease. Immunol Rev. 2008;0223:143–55.

    Article  CAS  Google Scholar 

  67. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3:541–7.

    Article  PubMed  CAS  Google Scholar 

  68. Read S, Malmström V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192:295–302.

    Article  PubMed  CAS  Google Scholar 

  69. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192:303–10.

    Article  PubMed  CAS  Google Scholar 

  70. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322:271–5.

    Article  PubMed  CAS  Google Scholar 

  71. Schmidt EM, Wang CJ, Ryan GA, Clough LE, Qureshi OS, Goodall M, et al. Ctla-4 controls regulatory T cell peripheral homeostasis and is required for suppression of pancreatic islet autoimmunity. J Immunol. 2009;182:274–82.

    PubMed  CAS  Google Scholar 

  72. Friedline RH, Brown DS, Nguyen H, Kornfeld H, Lee J, Zhang Y, et al. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J Exp Med. 2009;206:421–34.

    Article  PubMed  CAS  Google Scholar 

  73. Nisticò L, Buzzetti R, Pritchard LE, Van der Auwera B, Giovannini C, Bosi E, et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Hum Mol Genet. 1996;5:1075–80.

    Article  PubMed  Google Scholar 

  74. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423:506–11.

    Article  PubMed  CAS  Google Scholar 

  75. •• Gerold KD, Zheng P, Rainbow DB, Zernecke A, Wicker LS, Kissler S. The soluble CTLA-4 splice variant protects from type 1 diabetes and potentiates regulatory T-cell function. Diabetes. 2011;60:1955–63. Specific knockdown of soluble CTLA-4 was shown to abrogate Treg function and accelerate murine models of colitis and diabetes.

    Article  PubMed  CAS  Google Scholar 

  76. Dromey JA, Lee BH, Yu H, Young HE, Thearle DJ, Jensen KP, et al. Generation and expansion of regulatory human CD4(+) T-cell clones specific for pancreatic islet autoantigens. J Autoimmun. 2011;36:47–55.

    Article  PubMed  CAS  Google Scholar 

  77. June CH, Blazar BR. Riley JL Engineering lymphocyte subsets: tools, trials and tribulations. Nat Rev Immunol. 2009;9:704–16.

    Article  PubMed  CAS  Google Scholar 

  78. Yang S, Karne NK, Goff SL, Black MA, Xu H, Bischof D, et al. A simple and effective method to generate lentiviral vectors for ex vivo gene delivery to mature human peripheral blood lymphocytes. Hum Gene Ther Methods. 2012;23:73–83.

    Google Scholar 

  79. Plesa G, Zheng L, Medvec A, Wilson CB, Robles-Oteiza C, Liddy N, et al. TCR affinity and specificity requirements for human regulatory T-cell function. Blood. 2012;119:3420–30.

    Article  PubMed  CAS  Google Scholar 

  80. •• Fan H, Yang J, Hao J, Ren Y, Chen L, Li G, et al. Comparative study of regulatory t cells expanded ex vivo from cord blood and adult peripheral blood. Immunology. 2012;136:218–30. Comprehensive study highlighting the expansive and suppressive advantages of cord blood Treg over adult peripheral blood Treg.

  81. Hoffmann P, Eder R, Boeld TJ, Doser K, Piseshka B, Andreesen R, et al. Only the CD45RA + subpopulation of CD4 + CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood. 2006;108:4260–7.

    Article  PubMed  CAS  Google Scholar 

  82. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3:95ra73.

    Article  PubMed  CAS  Google Scholar 

  83. Bhaumik S. Advances in imaging gene-directed enzyme prodrug therapy. Curr Pharm Biotechnol. 2011;12:497–507.

    Article  PubMed  CAS  Google Scholar 

  84. Huurman VA, Hilbrands R, Pinkse GG, Gillard P, Duinkerken G, van de Linde P, et al. Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation. PLoS One. 2008;3:e2435.

    Article  PubMed  Google Scholar 

  85. Michels AW, Eisenbarth GS. Immune intervention in type 1 diabetes. Semin Immunol. 2011;23:214–9.

    Article  PubMed  CAS  Google Scholar 

  86. Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer. 2012;12:237–51.

    Article  PubMed  CAS  Google Scholar 

  87. Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117:1061–70.

    Article  PubMed  CAS  Google Scholar 

  88. Smyth DJ, Cooper JD, Howson JM, Walker NM, Plagnol V, Stevens H, et al. PTPN22 Trp620 explains the association of chromosome 1p13 with type 1 diabetes and shows a statistical interaction with HLA class II genotypes. Diabetes. 2008;57:1730–7.

    Article  PubMed  CAS  Google Scholar 

  89. Vang T, Congia M, Macis MD, Musumeci L, Orrú V, Zavattari P, et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet. 2005;37:1317–9.

    Article  PubMed  CAS  Google Scholar 

  90. Atabani SF, Thio CL, Divanovic S, Trompette A, Belkaid Y, Thomas DL, et al. Association of CTLA4 polymorphism with regulatory T cell frequency. Eur J Immunol. 2005;35:2157–62.

    Article  PubMed  CAS  Google Scholar 

  91. Smyth DJ, Plagnol V, Walker NM, Cooper JD, Downes K, Yang JH, et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med. 2008;359:2767–77.

    Article  PubMed  CAS  Google Scholar 

  92. Mayer E, Bannert C, Gruber S, Klunker S, Spittler A, Akdis CA, et al. Cord blood derived CD4+ CD25(high) T cells become functional regulatory T cells upon antigen encounter. PLoS One. 2012;7:e29355.

    Article  PubMed  CAS  Google Scholar 

  93. Fujimaki W, Takahashi N, Ohnuma K, Nagatsu M, Kurosawa H, Yoshida S, et al. Comparative study of regulatory T cell function of human CD25CD4 T cells from thymocytes, cord blood, and adult peripheral blood. Clin Dev Immunol. 2008;305859.

  94. Godfrey WR, Spoden DJ, Ge YG, Baker SR, Liu B, Levine BL, et al. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood. 2055;105:750–8.

    Article  Google Scholar 

  95. Barrett DM, Zhao Y, Liu X, Jiang S, Carpenito C, Kalos M, et al. Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther. 2011;22:1575–86.

    Article  PubMed  CAS  Google Scholar 

  96. Asanuma S, Tanaka J, Sugita J, Kosugi M, Shiratori S, Wakasa K, et al. Expansion of CD4(+)CD25 (+) regulatory T cells from cord blood CD4(+) cells using the common γ-chain cytokines (IL-2 and IL-15) and rapamycin. Ann Hematol. 2011;90:617–24.

    Article  PubMed  CAS  Google Scholar 

  97. d'Hennezel E, Piccirillo C. Functional plasticity in human FOXP3 (+) regulatory T cells: implications for cell-based immunotherapy. Hum Vaccin Immunother. 2012;8.

Download references

Acknowledgments

Funding for our prior studies cited in this review was provided by grants from the NIH (AI42288 and AI39250), a JDRF cord blood center grant to T.M.B. and Mark Atkinson, the JDRF Collaborative Center for Cell Therapy (CCCT) grant to Jeffrey Bluestone and T.M.B., and a JDRF Career Development Award to T.M.B. Additional project support was provided by the Brehm Coalition for Type 1 Diabetes.

The authors thank members of the Atkinson, Brusko, and Bluestone Laboratories, as well as the members of the JDRF CCCT for relevant discussions. While every effort was made to be inclusive, the authors apologize for any work that was inadvertently overlooked or not cited due to space constraints. No potential conflicts of interest relevant to this article were reported.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd M. Brusko.

Additional information

James A. Thompson and Daniel Perry contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, J.A., Perry, D. & Brusko, T.M. Autologous Regulatory T Cells for the Treatment of Type 1 Diabetes. Curr Diab Rep 12, 623–632 (2012). https://doi.org/10.1007/s11892-012-0304-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-012-0304-5

Keywords

Navigation