Skip to main content

Advertisement

Log in

Cell-Based Therapies for Diabetic Retinopathy

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Autologous endothelial progenitor cell (EPC) populations represent a novel treatment for therapeutic revascularization and vascular repair for diabetic patients with complications including diabetic retinopathy. Current therapies are applicable to late-stage disease and carry significant side effects, whereas cell-based therapy may provide an alternative by repairing areas of vasodegeneration and reversing ischemia. However, EPCs from diabetic patients with vascular complications are dysfunctional. Moreover, the diabetic environment poses its own challenges and complicates the use of autologous EPCs. Before EPCs become the ideal “cell therapy,” the optimal EPC must be determined, any functional dysfunction must be corrected prior to use, and the diabetic milieu will require modification to accept the EPCs. This review describes the rationale for harnessing the vascular reparative properties of EPCs with emphasis on the molecular and phenotypic nature of healthy EPCs, how diabetes alters them, and novel strategies to improve dysfunctional EPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest. 2000;106:571–8.

    Article  PubMed  CAS  Google Scholar 

  2. Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes. 2004;53:195–9.

    Article  PubMed  CAS  Google Scholar 

  3. Caballero S, Sengupta N, Afzal A, Chang KH, Li Calzi S, et al. Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes. 2007;56:960–7.

    Article  PubMed  CAS  Google Scholar 

  4. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation. 2002;106:2781–6.

    Article  PubMed  Google Scholar 

  5. Fadini GP, Agostini C, Avogaro A. Endothelial progenitor cells and vascular biology in diabetes mellitus: current knowledge and future perspectives. Curr Diab Rev. 2005;1:41–58.

    Article  CAS  Google Scholar 

  6. Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol. 2005;45:1449–57.

    Article  PubMed  CAS  Google Scholar 

  7. Zacchigna S, Ruiz de Almodovar C, Carmeliet P. Similarities between angiogenesis and neural development: what small animal models can tell us. Curr Top Dev Biol. 2008;80:1–55.

    Article  PubMed  Google Scholar 

  8. Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, et al. HMG-CoA reductase inhibitor mobilizes bone marrow–derived endothelial progenitor cells. J Clin Invest. 2001;108:399–405.

    PubMed  CAS  Google Scholar 

  9. Sengupta N, Caballero S, Mames RN, Timmers AM, Saban D, et al. Preventing stem cell incorporation into choroidal neovascularization by targeting homing and attachment factors. Invest Ophthalmol Vis Sci. 2005;46:343–8.

    Article  PubMed  Google Scholar 

  10. Tepper OM, Capla JM, Galiano RD, Ceradini DJ, Callaghan MJ, et al. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood. 2005;105:1068–77.

    Article  PubMed  CAS  Google Scholar 

  11. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 2000;105:71–7.

    Article  PubMed  CAS  Google Scholar 

  12. Zengin E, Chalajour F, Gehling UM, Ito WD, Treede H, et al. Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development. 2006;133:1543–51.

    Article  PubMed  CAS  Google Scholar 

  13. Yoder MC. Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol. 30:1094–103

  14. Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood. 2005;105:2783–6.

    Article  PubMed  CAS  Google Scholar 

  15. Timmermans F, Velghe I, Vanwalleghem L, De Smedt M, Van Coppernolle S, et al. Generation of T cells from human embryonic stem cell-derived hematopoietic zones. J Immunol. 2009;182:6879–88.

    Article  PubMed  CAS  Google Scholar 

  16. Watt SM, Athanassopoulos A, Harris AL, Tsaknakis G. Human endothelial stem/progenitor cells, angiogenic factors and vascular repair. J R Soc Interface. 7 Suppl 6:S731-51

  17. Madeddu P. Therapeutic angiogenesis and vasculogenesis for tissue regeneration. Exp Physiol. 2005;90:315–26.

    Article  PubMed  CAS  Google Scholar 

  18. Gulati R, Simari RD. Cell therapy for acute myocardial infarction. Med Clin North Am. 2007;91:769–85. xiii.

    Article  PubMed  Google Scholar 

  19. Sieveking DP, Ng MK. Cell therapies for therapeutic angiogenesis: back to the bench. Vasc Med. 2009;14:153–66.

    Article  PubMed  Google Scholar 

  20. •• Busik JV, Tikhonenko M, Bhatwadekar A, Opreanu M, Yakubova N, et al. Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J Exp Med. 2009;206:2897–906. This manuscript characterizes a specific EPC defect in diabetes, the loss of circadian rhythmicity of EPC release from the bone marrow. The manuscript describes studies in a rat model of type 2 diabetes that demonstrates bone marrow neuropathy proceeds the development of diabetic retinopathy and that the loss of bone marrow innervation is responsible for the abnormal EPC release.

    Article  PubMed  CAS  Google Scholar 

  21. Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood. 2003;102:1340–6.

    Article  PubMed  CAS  Google Scholar 

  22. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 1999;18:3964–72.

    Article  PubMed  CAS  Google Scholar 

  23. Wolfram O, Jentsch-Ullrich K, Wagner A, Hammwohner M, Steinke R, et al. G-CSF-induced mobilization of CD34(+) progenitor cells and proarrhythmic effects in patients with severe coronary artery disease. Pacing Clin Electrophysiol. 2007;30 Suppl 1:S166–169.

    PubMed  Google Scholar 

  24. Bhatwadekar AD, Glenn JV, Curtis TM, Grant MB, Stitt AW, et al. Retinal endothelial cell apoptosis stimulates recruitment of endothelial progenitor cells. Invest Ophthalmol Vis Sci. 2009;50:4967–73.

    Article  PubMed  Google Scholar 

  25. Ceradini DJ, Gurtner GC. Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med. 2005;15:57–63.

    Article  PubMed  CAS  Google Scholar 

  26. Butler JM, Guthrie SM, Koc M, Afzal A, Caballero S, et al. SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest. 2005;115:86–93.

    PubMed  CAS  Google Scholar 

  27. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    Article  PubMed  CAS  Google Scholar 

  28. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348:593–600.

    Article  PubMed  Google Scholar 

  29. Urbich C, Dimmeler S. Endothelial progenitor cells functional characterization. Trends Cardiovasc Med. 2004;14:318–22.

    Article  PubMed  CAS  Google Scholar 

  30. Sieveking DP, Buckle A, Celermajer DS, Ng MK. Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Coll Cardiol. 2008;51:660–8.

    Article  PubMed  CAS  Google Scholar 

  31. Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol. 2005;39:733–42.

    Article  PubMed  CAS  Google Scholar 

  32. Mukai S, Fukushima T, Naka D, Tanaka H, Osada Y, et al. Activation of hepatocyte growth factor activator zymogen (pro-HGFA) by human kallikrein 1-related peptidases. FEBS J. 2008;275:1003–17.

    Article  PubMed  CAS  Google Scholar 

  33. Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107:1164–9.

    Article  PubMed  Google Scholar 

  34. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007;109:1801–9.

    Article  PubMed  CAS  Google Scholar 

  35. Reinisch A, Hofmann NA, Obenauf AC, Kashofer K, Rohde E, et al. Humanized large-scale expanded endothelial colony-forming cells function in vitro and in vivo. Blood. 2009;113:6716–25.

    Article  PubMed  CAS  Google Scholar 

  36. He T, Lu T, d’Uscio LV, Lam CF, Lee HC, et al. Angiogenic function of prostacyclin biosynthesis in human endothelial progenitor cells. Circ Res. 2008;103:80–8.

    Article  PubMed  CAS  Google Scholar 

  37. •• Medina RJ, O’Neill CL, Humphreys MW, Gardiner TA, Stitt AW. Outgrowth endothelial cells: characterization and their potential for reversing ischemic retinopathy. Invest Ophthalmol Vis Sci. 2010;51:5906–13. The authors show OECs are committed to an endothelial lineage and have significant proliferative and de novo tubulogenic potential. OECs closely interacted with endothelial cells through adherens and tight junctions and integrated into retinal vascular networks in vitro. Using a murine model of retinal ischemia, the authors demonstrated that OECs directly incorporate into the resident vasculature, significantly decreasing avascular areas, concomitantly increasing normovascular areas, and preventing pathologic preretinal neovascularization. The authors conclude that OECs have potential as therapeutic cells to vascularize the ischemic retina.

    Article  PubMed  Google Scholar 

  38. Yoon CH, Hur J, Park KW, Kim JH, Lee CS, et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation. 2005;112:1618–27.

    Article  PubMed  Google Scholar 

  39. Chan-Ling T, Baxter L, Afzal A, Sengupta N, Caballero S, et al. Hematopoietic stem cells provide repair functions after laser-induced Bruch’s membrane rupture model of choroidal neovascularization. Am J Pathol. 2006;168:1031–44.

    Article  PubMed  CAS  Google Scholar 

  40. Loffredo F, Lee RT. Therapeutic vasculogenesis: it takes two. Circ Res. 2008;103:128–30.

    Article  PubMed  CAS  Google Scholar 

  41. Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, et al. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res. 2008;103:194–202.

    Article  PubMed  CAS  Google Scholar 

  42. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105:93–8.

    Article  PubMed  Google Scholar 

  43. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.

    Article  PubMed  CAS  Google Scholar 

  44. Caspi O, Huber I, Kehat I, Habib M, Arbel G, et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol. 2007;50:1884–93.

    Article  PubMed  Google Scholar 

  45. Gersh BJ, Simari RD, Behfar A, Terzic CM, Terzic A. Cardiac cell repair therapy: a clinical perspective. Mayo Clin Proc. 2009;84:876–92.

    Article  PubMed  CAS  Google Scholar 

  46. Hamano K, Nishida M, Hirata K, Mikamo A, Li TS, et al. Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results. Jpn Circ J. 2001;65:845–7.

    Article  PubMed  CAS  Google Scholar 

  47. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106:1913–8.

    Article  PubMed  Google Scholar 

  48. Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med. 2003;9:702–12.

    Article  PubMed  CAS  Google Scholar 

  49. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355:1199–209.

    Article  PubMed  CAS  Google Scholar 

  50. Tongers J, Roncalli JG, Losordo DW. Role of endothelial progenitor cells during ischemia-induced vasculogenesis and collateral formation. Microvasc Res. 79:200–06.

  51. Beeres SL, Atsma DE, van Ramshorst J, Schalij MJ, Bax JJ. Cell therapy for ischaemic heart disease. Heart. 2008;94:1214–26.

    Article  PubMed  Google Scholar 

  52. Awad O, Jiao C, Ma N, Dunnwald M, Schatteman GC. Obese diabetic mouse environment differentially affects primitive and monocytic endothelial cell progenitors. Stem Cells. 2005;23:575–83.

    Article  PubMed  CAS  Google Scholar 

  53. Loomans CJ, van Haperen R, Duijs JM, Verseyden C, de Crom R, et al. Differentiation of bone marrow-derived endothelial progenitor cells is shifted into a proinflammatory phenotype by hyperglycemia. Mol Med. 2009;15:152–9.

    Article  PubMed  CAS  Google Scholar 

  54. Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation. 2002;105:1656–62.

    Article  PubMed  CAS  Google Scholar 

  55. Aicher A, Zeiher AM, Dimmeler S. Mobilizing endothelial progenitor cells. Hypertension. 2005;45:321–5.

    Article  PubMed  CAS  Google Scholar 

  56. Urao N, Okigaki M, Yamada H, Aadachi Y, Matsuno K, et al. Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circ Res. 2006;98:1405–13.

    Article  PubMed  CAS  Google Scholar 

  57. Segal MS, Shah R, Afzal A, Perrault CM, Chang K, et al. Nitric oxide cytoskeletal-induced alterations reverse the endothelial progenitor cell migratory defect associated with diabetes. Diabetes. 2006;55:102–9.

    Article  PubMed  CAS  Google Scholar 

  58. Jarajapu YP, Grant MB. The promise of cell-based therapies for diabetic complications: challenges and solutions. Circ Res. 106:854–69.

  59. He T, Peterson TE, Holmuhamedov EL, Terzic A, Caplice NM, et al. Human endothelial progenitor cells tolerate oxidative stress due to intrinsically high expression of manganese superoxide dismutase. Arterioscler Thromb Vasc Biol. 2004;24:2021–7.

    Article  PubMed  CAS  Google Scholar 

  60. Togliatto G, Trombetta A, Dentelli P, Baragli A, Rosso A, et al. Unacylated ghrelin rescues endothelial progenitor cell function in individuals with type 2 diabetes. Diabetes. 59:1016–25.

  61. He T, Joyner MJ, Katusic ZS. Aging decreases expression and activity of glutathione peroxidase-1 in human endothelial progenitor cells. Microvasc Res. 2009;78:447–52.

    Article  PubMed  CAS  Google Scholar 

  62. Ingram DA, Krier TR, Mead LE, McGuire C, Prater DN, et al. Clonogenic endothelial progenitor cells are sensitive to oxidative stress. Stem Cells. 2007;25:297–304.

    Article  PubMed  CAS  Google Scholar 

  63. Urbich C, Dernbach E, Rossig L, Zeiher AM, Dimmeler S. High glucose reduces cathepsin L activity and impairs invasion of circulating progenitor cells. J Mol Cell Cardiol. 2008;45:429–36.

    Article  PubMed  CAS  Google Scholar 

  64. Ii M, Takenaka H, Asai J, Ibusuki K, Mizukami Y, et al. Endothelial progenitor thrombospondin-1 mediates diabetes-induced delay in reendothelialization following arterial injury. Circ Res. 2006;98:697–704.

    Article  PubMed  CAS  Google Scholar 

  65. Tan K, Lessieur E, Cutler A, Nerone P, Vasanji A, et al. Impaired function of circulating CD34(+) CD45(−) cells in patients with proliferative diabetic retinopathy. Exp Eye Res. 91:229–37.

  66. Cho HJ, Kim HS, Lee MM, Kim DH, Yang HJ, et al. Mobilized endothelial progenitor cells by granulocyte-macrophage colony-stimulating factor accelerate reendothelialization and reduce vascular inflammation after intravascular radiation. Circulation. 2003;108:2918–25.

    Article  PubMed  CAS  Google Scholar 

  67. Hwang JH, Kim SW, Park SE, Yun HJ, Lee Y, et al. Overexpression of stromal cell-derived factor-1 enhances endothelium-supported transmigration, maintenance, and proliferation of hematopoietic progenitor cells. Stem Cells Dev. 2006;15:260–8.

    Article  PubMed  CAS  Google Scholar 

  68. Sorrentino SA, Bahlmann FH, Besler C, Muller M, Schulz S, et al. Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation. 2007;116:163–73.

    Article  PubMed  CAS  Google Scholar 

  69. Mohler 3rd ER, Shi Y, Moore J, Bantly A, Hamamdzic D, et al. Diabetes reduces bone marrow and circulating porcine endothelial progenitor cells, an effect ameliorated by atorvastatin and independent of cholesterol. Cytom A. 2009;75:75–82.

    Article  Google Scholar 

  70. Ingram DA, Lien IZ, Mead LE, Estes M, Prater DN, et al. In vitro hyperglycemia or a diabetic intrauterine environment reduces neonatal endothelial colony-forming cell numbers and function. Diabetes. 2008;57:724–31.

    Article  PubMed  CAS  Google Scholar 

  71. Bhatwadekar A, Glenn JV, Figarola JL, Scott S, Gardiner TA, et al. A new advanced glycation inhibitor, LR-90, prevents experimental diabetic retinopathy in rats. Br J Ophthalmol. 2008;92:545–7.

    Article  PubMed  CAS  Google Scholar 

  72. Dorrell MI, Otani A, Aguilar E, Moreno SK, Friedlander M. Adult bone marrow-derived stem cells use R-cadherin to target sites of neovascularization in the developing retina. Blood. 2004;103:3420–7.

    Article  PubMed  CAS  Google Scholar 

  73. Otani A, Kinder K, Ewalt K, Otero FJ, Schimmel P, et al. Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med. 2002;8:1004–10.

    Article  PubMed  CAS  Google Scholar 

  74. Otani A, Dorrell MI, Kinder K, Moreno SK, Nusinowitz S, et al. Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest. 2004;114:765–74.

    PubMed  CAS  Google Scholar 

  75. Ritter MR, Banin E, Moreno SK, Aguilar E, Dorrell MI, et al. Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest. 2006;116:3266–76.

    Article  PubMed  CAS  Google Scholar 

  76. Kramerov AA, Saghizadeh M, Caballero S, Shaw LC, Li Calzi S, et al. Inhibition of protein kinase CK2 suppresses angiogenesis and hematopoietic stem cell recruitment to retinal neovascularization sites. Mol Cell Biochem. 2008;316:177–86.

    Article  PubMed  CAS  Google Scholar 

  77. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 22:231–7.

  78. Caballero S, Yang R, Grant MB, Chaqour B. Selective blockade of cytoskeletal actin remodeling reduces experimental choroidal neovascularization. Invest Ophthalmol Vis Sci.

  79. Chakravarthy U, Gardiner TA. Endothelium-derived agents in pericyte function/dysfunction. Prog Retin Eye Res. 1999;18:511–27.

    Article  PubMed  CAS  Google Scholar 

  80. Ding R, Darland DC, Parmacek MS, D’Amore PA. Endothelial-mesenchymal interactions in vitro reveal molecular mechanisms of smooth muscle/pericyte differentiation. Stem Cells Dev. 2004;13:509–20.

    PubMed  CAS  Google Scholar 

  81. Puro DG. Physiology and pathobiology of the pericyte-containing retinal microvasculature: new developments. Microcirculation. 2007;14:1–10.

    Article  PubMed  CAS  Google Scholar 

  82. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97:512–23.

    Article  PubMed  CAS  Google Scholar 

  83. Campagnolo P, Wong MM, Xu Q. Progenitor cells in arteriosclerosis: good or bad guys? Antioxid Redox Signal.

  84. Assmus B, Urbich C, Aicher A, Hofmann WK, Haendeler J, et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res. 2003;92:1049–55.

    Article  PubMed  CAS  Google Scholar 

  85. Besler C, Doerries C, Giannotti G, Luscher TF, Landmesser U. Pharmacological approaches to improve endothelial repair mechanisms. Expert Rev Cardiovasc Ther. 2008;6:1071–82.

    Article  PubMed  CAS  Google Scholar 

  86. Bahlmann FH, De Groot K, Spandau JM, Landry AL, Hertel B, et al. Erythropoietin regulates endothelial progenitor cells. Blood. 2004;103:921–6.

    Article  PubMed  CAS  Google Scholar 

  87. •• Bhatwadekar AD, Guerin EP, Jarajapu YP, Caballero S, Sheridan C, et al. Transient inhibition of transforming growth factor-beta1 in human diabetic CD34+ cells enhances vascular reparative functions. Diabetes. 2010;59:2010–9. The studies presented in this manuscript show that transient inhibition of TGF-β1 in CD34+ cells ex vivo enhances repair after vascular damage. This finding may have a profound impact on disease states associated with vascular dysfunction such as ischemic heart disease and diabetic vascular complications. Autologous cellular therapy has not been feasible in diabetic patients because of dysfunctional cells. The transient inhibition of TGF-β1 may represent a promising therapeutic strategy for restoring vascular reparative function in diabetic CD34+ cells and may increase the likelihood of successful cellular therapy in diabetic individuals.

    Article  PubMed  CAS  Google Scholar 

  88. Marrotte EJ, Chen DD, Hakim JS, Chen AF. Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. J Clin Invest. 120:4207–19.

  89. Matsuura K, Hagiwara N. The pleiotropic effects of ARB in vascular endothelial progenitor cells. Curr Vasc Pharmacol.

  90. Sampaio WO, Henrique de Castro C, Santos RA, Schiffrin EL, Touyz RM. Angiotensin-(1-7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension. 2007;50:1093–8.

    Article  PubMed  CAS  Google Scholar 

  91. Benter IF, Yousif MH, Dhaunsi GS, Kaur J, Chappell MC, et al. Angiotensin-(1-7) prevents activation of NADPH oxidase and renal vascular dysfunction in diabetic hypertensive rats. Am J Nephrol. 2008;28:25–33.

    Article  PubMed  CAS  Google Scholar 

  92. Iusuf D, Henning RH, van Gilst WH, Roks AJ. Angiotensin-(1-7): pharmacological properties and pharmacotherapeutic perspectives. Eur J Pharmacol. 2008;585:303–12.

    Article  PubMed  CAS  Google Scholar 

  93. Jarajapu YPR, Bhatwadekar AD, Caballero S, et al. Protection from diabetes-induced endothelial progenitor cell dysfunction by ACE2/Angiotensin-(1-7)/Mas receptor axis. Presented at the Experimental Biology Conference. Washington, D.C. April 9–13, 2011.

  94. Chang J, Li Y, Huang Y, Lam KS, Hoo RL, et al. Adiponectin prevents diabetic premature senescence of endothelial progenitor cells and promotes endothelial repair by suppressing the p38 MAP kinase/p16INK4A signaling pathway. Diabetes. 59:2949–59.

  95. Sapieha P, Joyal JS, Rivera JC, Kermorvant-Duchemin E, Sennlaub F, et al. Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J Clin Invest. 120:3022–32.

  96. Parodi MB, Bandello F. Branch retinal vein occlusion: classification and treatment. Ophthalmologica. 2009;223:298–305.

    Article  PubMed  Google Scholar 

  97. Shahid H, Hossain P, Amoaku WM. The management of retinal vein occlusion: is interventional ophthalmology the way forward? Br J Ophthalmol. 2006;90:627–39.

    Article  PubMed  CAS  Google Scholar 

  98. Hughes S, Gardiner T, Baxter L, Chan-Ling T. Changes in pericytes and smooth muscle cells in the kitten model of retinopathy of prematurity: implications for plus disease. Invest Ophthalmol Vis Sci. 2007;48:1368–79.

    Article  PubMed  Google Scholar 

  99. Tendera M, Wojakowski W, Ruzyllo W, Chojnowska L, Kepka C, et al. Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur Heart J. 2009;30:1313–21.

    Article  PubMed  Google Scholar 

  100. Sekiguchi H, Ii M, Losordo DW. The relative potency and safety of endothelial progenitor cells and unselected mononuclear cells for recovery from myocardial infarction and ischemia. J Cell Physiol. 2009;219:235–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria B. Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, L.C., Neu, M.B. & Grant, M.B. Cell-Based Therapies for Diabetic Retinopathy. Curr Diab Rep 11, 265–274 (2011). https://doi.org/10.1007/s11892-011-0197-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-011-0197-8

Keywords

Navigation