Skip to main content

Advertisement

Log in

From Genetic Association to Molecular Mechanism

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Over the past 3 years, there has been a dramatic increase in the number of confirmed type 2 diabetes (T2D) susceptibility loci, most arising through the implementation of genome-wide association studies (GWAS). However, progress toward the understanding of disease mechanisms has been slowed by modest effect sizes and the fact that most GWAS signals map away from coding sequence: the presumption is that their effects are mediated through regulation of nearby transcripts, but the identities of the genes concerned are often far from clear. In this review we describe the progress that has been made to date in translating association signals into molecular mechanisms with a focus on the most tractable signals (eg, KCNJ11/ABCC8, SLC30A8, GCKR) and those in which human, animal, and cellular models (FTO, TCF7L2, G6PC2) have provided insights into the role in T2D pathogenesis. Finally, the challenges for the field with the advent of genome-scale next-generation resequencing efforts are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Köbberling J, Tillil H: Empirical risk figures for first degree relatives of non-insulin-dependent diabetics. In The Genetics of Diabetes Mellitus. Edited by Köbberling J, Tattersall R. London: Academic Press; 1982:201–209.

  2. • Voight BF, Scott LJ, Steinthorsdottir V, et al.: Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010, 42:579–589. This is the most recent meta-analysis of GWAS for T2D.

  3. Gloyn AL, Weedon MN, Owen KR, et al.: Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 2003, 52:568–572.

    Google Scholar 

  4. Altshuler D, Hirschhorn JN, Klannemark M, et al.: The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000, 26:76–80.

    Article  CAS  PubMed  Google Scholar 

  5. Grant SF, Thorleifsson G, Reynisdottir I, et al.: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006, 38:320–323.

    Article  CAS  PubMed  Google Scholar 

  6. Scott LJ, Mohlke KL, Bonnycastle LL, et al.: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007, 316:1341–1345.

    Article  CAS  PubMed  Google Scholar 

  7. Saxena R, Voight BF, Lyssenko V, et al.: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316:1331–1336.

    Article  CAS  PubMed  Google Scholar 

  8. Zeggini E, Weedon MN, Lindgren CM, et al.: Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007, 316:1336–1341.

    Article  CAS  PubMed  Google Scholar 

  9. Sladek R, Rocheleau G, Rung J, et al.: A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445:881–885.

    Article  CAS  PubMed  Google Scholar 

  10. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al.: A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 2007, 39:770–775.

    Article  CAS  PubMed  Google Scholar 

  11. Zeggini E, Scott LJ, Saxena R, et al.: Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008, 40:638–645.

    Article  CAS  PubMed  Google Scholar 

  12. Dupuis J, Langenberg C, Prokopenko I, et al.: New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010, 42:105–116.

    Article  CAS  PubMed  Google Scholar 

  13. Kong A, Steinthorsdottir V, Masson G, et al.: Parental origin of sequence variants associated with complex diseases. Nature 2009, 462:868–874.

    Article  CAS  PubMed  Google Scholar 

  14. •• Nicolson TJ, Bellomo EA, Wijesekara N, et al.: Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 2009, 58:2070–2083. This is one of the only reports of the functional study of a T2D-associated SNP arising from a GWAS.

  15. •• Beer NL, Tribble ND, McCulloch LJ, et al.: The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet 2009, 18:4081–4088. This is one of the only reports of the functional study of a T2D-associated SNP arising from a GWAS.

  16. Bort R, Martinez-Barbera JP, Beddington RS, et al.: Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development 2004, 131:797–806.

    Article  CAS  PubMed  Google Scholar 

  17. Hwang DY, Seo S, Kim Y, et al.: Significant change in insulin production, glucose tolerance and ER stress signaling in transgenic mice coexpressing insulin-siRNA and human IDE. Int J Mol Med 2007, 19:65–73.

    CAS  PubMed  Google Scholar 

  18. Krishnamurthy J, Ramsey MR, Ligon KL, et al.: p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 2006, 443:453–457.

    Article  CAS  PubMed  Google Scholar 

  19. Broadbent HM, Peden JF, Lorkowski S, et al.: Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet 2008, 17:806–814.

    Article  CAS  PubMed  Google Scholar 

  20. Pasmant E, Laurendeau I, Heron D, et al.: Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res 2007, 67:3963–3969.

    Article  CAS  PubMed  Google Scholar 

  21. • Ingelsson E, Langenberg C, Hivert MF, et al.: Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans. Diabetes 2010, 59:1266–1275. This is an elegant study looking at the effects of genetic variants on insulin secretion and action that provides important insights into the pathways and genes that the variants are working through.

  22. •• Hamming KS, Soliman D, Matemisz LC, et al.: Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K(+) channel. Diabetes 2009, 58:2419–2424. This is the only study to look at the combined risk haplotype of KCNJ11 E23K and ABCC8 S169A.

  23. Flanagan SE, Clauin S, Bellanne-Chantelot C, et al.: Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 2009, 30:170–180.

    Article  CAS  PubMed  Google Scholar 

  24. Florez JC, Burtt N, de Bakker PI, et al.: Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 2004, 53:1360–1368.

    Article  CAS  PubMed  Google Scholar 

  25. Schwanstecher C, Meyer U,Schwanstecher M: K(IR)6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic beta-cell ATP-sensitive K(+) channels. Diabetes 2002, 51:875–879.

    Google Scholar 

  26. Sakura H, Wat N, Horton V, et al.: Sequence variations in the human Kir6.2 gene, a subunit of the beta-cell ATP-sensitive K-channel: no association with NIDDM in while Caucasian subjects or evidence of abnormal function when expressed in vitro. Diabetologia 1996, 39:1233–1236.

    Article  CAS  PubMed  Google Scholar 

  27. Riedel MJ, Boora P, Steckley D, et al.: Kir6.2 polymorphisms sensitize beta-cell ATP-sensitive potassium channels to activation by acyl CoAs: a possible cellular mechanism for increased susceptibility to type 2 diabetes? Diabetes 2003, 52:2630–2635.

  28. Villareal DT, Koster JC, Robertson H, et al.: Kir6.2 variant E23K increases ATP-sensitive K + channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance. Diabetes 2009, 58:1869–1878.

    Article  CAS  PubMed  Google Scholar 

  29. Wenzlau JM, Juhl K, Yu L, et al.: The cation efflux transporter ZnT8 (Slc30α8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A 2007, 104:17040–17045.

    Article  CAS  PubMed  Google Scholar 

  30. Wenzlau JM, Liu Y, Yu L, et al.: A common nonsynonymous single nucleotide polymorphism in the SLC30A8 gene determines ZnT8 autoantibody specificity in type 1 diabetes. Diabetes 2008, 57:2693–2697.

    Article  CAS  PubMed  Google Scholar 

  31. Wijesekara N, Dai FF, Hardy AB, et al.: Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 2010, 53:1656–1668.

    Article  CAS  PubMed  Google Scholar 

  32. Pound LD, Sarkar SA, Benninger RK, et al.: Deletion of the mouse Slc30α8 gene encoding zinc transporter-8 results in impaired insulin secretion. Biochem J 2009, 421:371–376.

    Article  CAS  PubMed  Google Scholar 

  33. Lemaire K, Ravier MA, Schraenen A, et al.: Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci U S A 2009, 106:14872–14877.

    Article  CAS  PubMed  Google Scholar 

  34. Orho-Melander M, Melander O, Guiducci C, et al.: Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes 2008, 57:3112–3121.

    Article  CAS  PubMed  Google Scholar 

  35. Grimsby J, Coffey JW, Dvorozniak MT, et al.: Characterization of glucokinase regulatory protein-deficient mice. J Biol Chem 2000, 275:7826–7831.

    Article  CAS  PubMed  Google Scholar 

  36. O’Doherty RM, Lehman DL, Telemaque-Potts S, et al.: Metabolic impact of glucokinase overexpression in liver: lowering of blood glucose in fed rats is accompanied by hyperlipidemia. Diabetes 1999, 48:2022–2027.

    Article  PubMed  Google Scholar 

  37. Slosberg ED, Desai UJ, Fanelli B, et al.: Treatment of type 2 diabetes by adenoviral-mediated overexpression of the glucokinase regulatory protein. Diabetes 2001, 50:1813–1820.

    Article  CAS  PubMed  Google Scholar 

  38. Veiga-da-Cunha M, Delplanque J, Gillain A, et al.: Mutations in the glucokinase regulatory protein gene in 2p23 in obese French Caucasians. Diabetologia 2003, 46:704–711.

    CAS  PubMed  Google Scholar 

  39. Veiga-da-Cunha M,Van Schaftingen E: Identification of fructose 6-phosphate- and fructose 1-phosphate-binding residues in the regulatory protein of glucokinase. J Biol Chem 2002, 277:8466–8473.

    Article  CAS  PubMed  Google Scholar 

  40. Brocklehurst KJ, Davies RA, Agius L: Differences in regulatory properties between human and rat glucokinase regulatory protein. Biochem J 2004, 378:693–697.

    Article  CAS  PubMed  Google Scholar 

  41. •• Gaulton KJ, Nammo T, Pasquali L, et al.: A map of open chromatin in human pancreatic islets. Nat Genet 2010, 42:255–259. This is an elegant study and the first of its kind providing not only a map of open chromatin in human islets but also a molecular mechanisms for TCF7L2 variants.

  42. Frayling TM, Timpson NJ, Weedon MN, et al.: A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007, 316:889–894.

    Article  CAS  PubMed  Google Scholar 

  43. Peters T, Ausmeier K, Ruther U: Cloning of Fatso (Fto), a novel gene deleted by the Fused toes (Ft) mouse mutation. Mamm Genome 1999, 10:983–986.

    Article  CAS  PubMed  Google Scholar 

  44. Gerken T, Girard CA, Tung YC, et al.: The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 2007, 318:1469–1472.

    Article  CAS  PubMed  Google Scholar 

  45. Church C, Lee S, Bagg EA, et al.: A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet 2009, 5:e1000599.

    Article  PubMed  Google Scholar 

  46. •• Fischer J, Koch L, Emmerling C, et al.: Inactivation of the Fto gene protects from obesity. Nature 2009, 458:894–898. This study provided the best evidence that the obesity-associated signals were working through FTO.

  47. Speakman JR: FTO effect on energy demand versus food intake. Nature 2010, 464:E1; discussion E2.

  48. Speakman JR, Rance KA, Johnstone AM: Polymorphisms of the FTO gene are associated with variation in energy intake, but not energy expenditure. Obesity (Silver Spring) 2008, 16:1961–1965.

    Article  CAS  Google Scholar 

  49. Boissel S, Reish O, Proulx K, et al.: Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet 2009, 85:106–111.

    Article  CAS  PubMed  Google Scholar 

  50. Meyre D, Proulx K, Kawagoe-Takaki H, et al.: Prevalence of loss-of-function FTO mutations in lean and obese individuals. Diabetes 2010, 59:311–318.

    Article  CAS  PubMed  Google Scholar 

  51. Logan CY,Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004, 20:781–810.

    Article  CAS  PubMed  Google Scholar 

  52. Korinek V, Barker N, Moerer P, et al.: Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 1998, 19:379–383.

    Article  CAS  PubMed  Google Scholar 

  53. Yi F, Brubaker PL, Jin T: TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem 2005, 280:1457–1464.

    Article  CAS  PubMed  Google Scholar 

  54. Lyssenko V, Lupi R, Marchetti P, et al.: Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 2007, 117:2155–2163.

    Article  CAS  PubMed  Google Scholar 

  55. Shu L, Sauter NS, Schulthess FT, et al.: Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets. Diabetes 2008, 57:645–653.

    Article  CAS  PubMed  Google Scholar 

  56. da Silva Xavier G, Loder MK, McDonald A, et al.: TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes 2009, 58:894–905.

  57. Bouatia-Naji N, Rocheleau G, Van Lommel L, et al.: A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science 2008, 320:1085–1088.

    Article  CAS  PubMed  Google Scholar 

  58. Wang Y, Martin CC, Oeser JK, et al.: Deletion of the gene encoding the islet-specific glucose-6-phosphatase catalytic subunit-related protein autoantigen results in a mild metabolic phenotype. Diabetologia 2007, 50:774–778.

    Article  CAS  PubMed  Google Scholar 

  59. Chen WM, Erdos MR, Jackson AU, et al.: Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J Clin Invest 2008, 118:2620–2628.

    CAS  PubMed  Google Scholar 

  60. Lieberman SM, Evans AM, Han B, et al.: Identification of the beta cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc Natl Acad Sci U S A 2003, 100:8384–8388.

    Article  CAS  PubMed  Google Scholar 

  61. Dos Santos C, Bougneres P, Fradin D: A single-nucleotide polymorphism in a methylatable Foxa2 binding site of the G6PC2 promoter is associated with insulin secretion in vivo and increased promoter activity in vitro. Diabetes 2009, 58:489–492.

    Article  PubMed  Google Scholar 

  62. •• Bouatia-Naji N, Bonnefond A, Baerenwald DA, et al.: Genetic and functional assessment of the role of the rs13431652-A and rs573225-A alleles in the G6PC2 promoter that strongly associate with elevated fasting glucose levels. Diabetes 2010 Jul 9 [Epub ahead of print]. This is one of the few studies functionally characterizing risk alleles associated with glycemic traits.

  63. Manolio TA, Collins FS, Cox NJ, et al.: Finding the missing heritability of complex diseases. Nature 2009, 461:747–753.

    Article  CAS  PubMed  Google Scholar 

  64. Braun M, Ramracheya R, Bengtsson M, et al.: Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion. Diabetes 2008, 57:1618–1628.

    Article  CAS  PubMed  Google Scholar 

  65. Bosco D, Armanet M, Morel P, et al.: Unique arrangement of alpha- and beta-cells in human islets of Langerhans. Diabetes 2010, 59:1202–1210.

    Article  CAS  PubMed  Google Scholar 

  66. Fiaschi-Taesch N, Bigatel TA, Sicari B, et al.: Survey of the human pancreatic beta-cell G1/S proteome reveals a potential therapeutic role for cdk-6 and cyclin D1 in enhancing human beta-cell replication and function in vivo. Diabetes 2009, 58:882–893

    Article  CAS  PubMed  Google Scholar 

  67. Borowiak M, Melton DA: How to make beta cells? Curr Opin Cell Biol 2009, 21:727–732.

    Article  CAS  PubMed  Google Scholar 

  68. Simonis-Bik AM, Nijpels G, van Haeften TW, et al.: Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic beta-cell function. Diabetes 2010, 59:293–301.

    Article  CAS  PubMed  Google Scholar 

  69. Koo BH, Coe DM, Dixon LJ, et al.: ADAMTS9 is a cell-autonomously acting, anti-angiogenic metalloprotease expressed by microvascular endothelial cells. Am J Pathol 2010, 176:1494–1504.

    Article  CAS  PubMed  Google Scholar 

  70. Freathy RM, Mook-Kanamori DO, Sovio U, et al.: Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight. Nat Genet 2010, 42:430–435.

    Article  CAS  PubMed  Google Scholar 

  71. Sankaran VG, Xu J, Ragoczy T, et al.: Developmental and species-divergent globin switching are driven by BCL11A. Nature 2009, 460:1093–1097.

    Article  CAS  PubMed  Google Scholar 

  72. Wang X, Pankratz VS, Fredericksen Z, et al.: Common variants associated with breast cancer in genome wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers. Hum Mol Genet 2010, 19:2886–2897.

    Article  CAS  PubMed  Google Scholar 

  73. Verploegen S, Ulfman L, van Deutekom HW, et al.: Characterization of the role of CaMKI-like kinase (CKLiK) in human granulocyte function. Blood 2005, 106:1076–1083.

    Article  CAS  PubMed  Google Scholar 

  74. Groenewoud MJ, Dekker JM, Fritsche A, et al.: Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia 2008, 51:1659–1663.

    Article  CAS  PubMed  Google Scholar 

  75. Saxena R, Hivert MF, Langenberg C, et al.: Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet 2010, 42:142–148.

    Article  CAS  PubMed  Google Scholar 

  76. Grarup N, Rose CS, Andersson EA, et al.: Studies of association of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: validation and extension of genome-wide association studies. Diabetes 2007, 56:3105–3111.

    Article  CAS  PubMed  Google Scholar 

  77. Wang GS, Kauri LM, Patrick C, et al.: Enhanced islet expansion by beta-cell proliferation in young diabetes-prone rats fed a protective diet. J Cell Physiol 2010, 224:501–508.

    Article  CAS  PubMed  Google Scholar 

  78. Campa F, Yoon HY, Ha VL, et al.: A PH domain in the Arf GTPase-activating protein (GAP) ARAP1 binds phosphatidylinositol 3,4,5-trisphosphate and regulates Arf GAP activity independently of recruitment to the plasma membranes. J Biol Chem 2009, 284:28069–28083.

    Article  CAS  PubMed  Google Scholar 

  79. Martell KJ, Seasholtz AF, Kwak SP, et al.: hVH-5: a protein tyrosine phosphatase abundant in brain that inactivates mitogen-activated protein kinase. J Neurochem 1995, 65:1823–1833.

    Article  CAS  PubMed  Google Scholar 

  80. Emanuelli B, Eberle D, Suzuki R, et al.: Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance. Proc Natl Acad Sci U S A 2008, 105:3545–3550.

    Article  CAS  PubMed  Google Scholar 

  81. Osbak KK, Colclough K, Saint-Martin C, et al.: Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 2009, 30:1512–1526.

    Article  CAS  PubMed  Google Scholar 

  82. Zhao J, Bradfield JP, Zhang H, et al.: Examination of all type 2 diabetes GWAS loci reveals HHEX-IDE as a locus influencing pediatric BMI. Diabetes 2010, 59:751–755.

    Article  CAS  PubMed  Google Scholar 

  83. Tay Y, Peter S, Rigoutsos I, et al.: Insights into the regulation of a common variant of HMGA2 associated with human height during embryonic development. Stem Cell Rev 2009, 5:328–333.

    Article  CAS  PubMed  Google Scholar 

  84. Ferrer J: A genetic switch in pancreatic beta-cells: implications for differentiation and haploinsufficiency. Diabetes 2002, 51:2355–2362.

    Article  CAS  PubMed  Google Scholar 

  85. Haumaitre C, Barbacci E, Jenny M, et al.: Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc Natl Acad Sci U S A 2005, 102:1490–1495.

    Article  CAS  PubMed  Google Scholar 

  86. Haldorsen IS, Vesterhus M, Raeder H, et al.: Lack of pancreatic body and tail in HNF1B mutation carriers. Diabet Med 2008, 25:782–787.

    Article  CAS  PubMed  Google Scholar 

  87. Christiansen J, Kolte AM, Hansen TO, et al.: IGF2 mRNA-binding protein 2: biological function and putative role in type 2 diabetes. J Mol Endocrinol 2009, 43:187–195.

    Article  CAS  PubMed  Google Scholar 

  88. Brants JR, Ayoubi TA, Chada K, et al.: Differential regulation of the insulin-like growth factor II mRNA-binding protein genes by architectural transcription factor HMGA2. FEBS Lett 2004, 569:277–283.

    Article  CAS  PubMed  Google Scholar 

  89. LeRoith D,Gavrilova O: Mouse models created to study the pathophysiology of type 2 diabetes. Int J Biochem Cell Biol 2006, 38:904–912.

    Article  CAS  PubMed  Google Scholar 

  90. Prudente S, Morini E,Trischitta V: Insulin signaling regulating genes: effect on T2DM and cardiovascular risk. Nat Rev Endocrinol 2009, 5:682–693.

    Article  CAS  PubMed  Google Scholar 

  91. Rung J, Cauchi S, Albrechtsen A, et al.: Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet 2009, 41:1110–1115.

    Article  CAS  PubMed  Google Scholar 

  92. Yasuda K, Miyake K, Horikawa Y, et al.: Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 2008, 40:1092–1097.

    Article  CAS  PubMed  Google Scholar 

  93. Hertveldt V, Louryan S, van Reeth T, et al.: The development of several organs and appendages is impaired in mice lacking Sp6. Dev Dyn 2008, 237:883–892.

    Article  CAS  PubMed  Google Scholar 

  94. Mulder H, Nagorny CL, Lyssenko V, et al.: Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene. Diabetologia 2009, 52:1240–1249.

    Article  CAS  PubMed  Google Scholar 

  95. Nakhai H, Siveke JT, Klein B, et al.: Conditional ablation of Notch signaling in pancreatic development. Development 2008, 135:2757–2765.

    Article  CAS  PubMed  Google Scholar 

  96. Rosen ED, Kulkarni RN, Sarraf P, et al.: Targeted elimination of peroxisome proliferator-activated receptor gamma in beta cells leads to abnormalities in islet mass without compromising glucose homeostasis. Mol Cell Biol 2003, 23:7222–7229.

    Article  CAS  PubMed  Google Scholar 

  97. Courtheoux T, Gay G, Gachet Y, et al.: Ase1/Prc1-dependent spindle elongation corrects merotely during anaphase in fission yeast. J Cell Biol 2009, 187:399–412.

    Article  CAS  PubMed  Google Scholar 

  98. Song KH, Li T, Chiang JY: A Prospero-related homeodomain protein is a novel co-regulator of hepatocyte nuclear factor 4alpha that regulates the cholesterol 7alpha-hydroxylase gene. J Biol Chem 2006, 281:10081–10088.

    Article  CAS  PubMed  Google Scholar 

  99. Wang J, Kilic G, Aydin M, et al.: Prox1 activity controls pancreas morphogenesis and participates in the production of “secondary transition” pancreatic endocrine cells. Dev Biol 2005, 286:182–194.

    Article  CAS  PubMed  Google Scholar 

  100. Gironella M, Seux M, Xie MJ, et al.: Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci U S A 2007, 104:16170–16175.

    Article  CAS  PubMed  Google Scholar 

  101. Jarikji Z, Horb LD, Shariff F, et al.: The tetraspanin Tm4sf3 is localized to the ventral pancreas and regulates fusion of the dorsal and ventral pancreatic buds. Development 2009, 136:1791–1800.

    Article  CAS  PubMed  Google Scholar 

  102. Fonseca SG, Ishigaki S, Oslowski CM, et al.: Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J Clin Invest 2010, 120:744–755.

    Article  CAS  PubMed  Google Scholar 

  103. Sandhu MS, Weedon MN, Fawcett KA, et al.: Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet 2007, 39:951–953.

    Article  CAS  PubMed  Google Scholar 

  104. Chen T, Li M, Ding Y, et al.: Identification of zinc-finger BED domain-containing 3 (Zbed3) as a novel Axin-interacting protein that activates Wnt/beta-catenin signaling. J Biol Chem 2009, 284:6683–6689.

    Article  CAS  PubMed  Google Scholar 

  105. Duan W, Sun B, Li TW, et al.: Cloning and characterization of AWP1, a novel protein that associates with serine/threonine kinase PRK1 in vivo. Gene 2000, 256:113–121.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to the colleagues whose work we could not cite here because of space limitations. Dr. Anna L. Gloyn is a Medical Research Council (MRC) New investigator (Grant Code 81696). Dr. Martijn van de Bunt is a Nuffield Department of Medicine Prize Student. Projects in the Gloyn laboratory are funded by the MRC and Diabetes UK.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna L. Gloyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Bunt, M., Gloyn, A.L. From Genetic Association to Molecular Mechanism. Curr Diab Rep 10, 452–466 (2010). https://doi.org/10.1007/s11892-010-0150-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-010-0150-2

Keywords

Navigation