Skip to main content

Advertisement

Log in

Lessons learned from studying families genetically predisposed to type 2 diabetes mellitus

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Early interventions to prevent type 2 diabetes mellitus (T2DM) demand a better understanding of its underlying mechanisms. Nonobese healthy subjects with a strong family history of T2DM (FH+ subjects) hold a key to this end by allowing the study of the disease before the development of confounding factors, such as obesity or hyperglycemia. In this article, we share our experience over the past decade in studying FH+ subjects and how lipotoxicity alters glucose metabolism in such individuals, in particular pancreatic β-cell function. FH+ subjects have no obvious clinical abnormalities, but when carefully studied, reveal severe hepatic/muscle/adipose tissue insulin resistance and subtle defects in β-cell function. In most subjects, metabolic adaption allows freedom from diabetes for decades. However, the obesity epidemic is drastically changing this. Given the unique susceptibility of pancreatic β cells to free fatty acids in FH+ subjects, interventions that protect against obesity-induced lipotoxicity may hold the greatest promise for preventing T2DM in genetically predisposed individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Cusi K: The epidemic of type 2 diabetes mellitus: its links to obesity, insulin resistance and lipotoxicity. In Diabetes and Exercise. Edited by Regensteiner JG, Reusch JE, Stewart K, Veves A. Totowa, NJ: Humana Press; 2009 (in press).

    Google Scholar 

  2. Wyatt, Wyatt SB, Winters KP, Dubbert PM: Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Am J Med Sci 2006, 331:166–174.

    Article  PubMed  Google Scholar 

  3. Cusi K, DeFronzo R: Non-insulin dependent diabetes mellitus. In Handbook of Physiology. The Endocrine Pancreas and Regulation of Metabolism. Edited by Jefferson LS, Cherrington AD. Oxford, UK: Oxford University Press, 2001:1115–1168.

    Google Scholar 

  4. Vaag A, Poulsen P: Twins in metabolic and diabetes research: what do they tell us? Curr Opin Clin Nutr Metab Care 2007, 10:591–596.

    Article  PubMed  CAS  Google Scholar 

  5. Warram J, Krolewski A, Kahn C: Slow glucose removal rate and hyperinsulinemia precede the development of type 2 diabetes in offspring of diabetic parents. Ann Intern Med 1990, 113:909–915.

    PubMed  CAS  Google Scholar 

  6. Buchanan TA: (How) can we prevent type 2 diabetes? Diabetes 2007, 56:1502–1507.

    Article  PubMed  CAS  Google Scholar 

  7. Gulli G, Ferrannini E, Stern M, et al.: The metabolic profile of NIDDM is fully established in glucose-tolerant offspring of two Mexican-American NIDDM parents. Diabetes 1992, 41:1575–1586.

    Article  PubMed  CAS  Google Scholar 

  8. Pratipanawatr W, Pratipanawatr T, Cusi K, et al.: Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation. Diabetes 2001, 50:2572–2578.

    Article  PubMed  CAS  Google Scholar 

  9. Kashyap S, Belfort R, Gastaldelli A, et al.: A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes 2003, 52:2461–2474.

    Article  PubMed  CAS  Google Scholar 

  10. Kashyap SR, Belfort R, Berria R, et al.: Discordant effects of a chronic physiological increase in plasma FFA on insulin signaling in healthy subjects with or without a family history of type 2 diabetes. Am J Physiol Endocrin Metab 2004, 287:E537–E546.

    Article  CAS  Google Scholar 

  11. Mathew M, Tay C, Belfort R, et al.: A 48-hour elevation in plasma FFA, but not hyperglycemia, impairs insulin secretion in lean Mexican-American subjects genetically predisposed to T2DM. Diabetes 2007, 56(Suppl 1):A674.

    Google Scholar 

  12. Petersen KF, Dufour S, Befroy D, et al.: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004, 350:664–671.

    Article  PubMed  CAS  Google Scholar 

  13. Boden G: Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997, 46:3–10.

    Article  PubMed  CAS  Google Scholar 

  14. Kelley D, Mandarino L: Fuel selection in human skeletal muscle in insulin resistance. A reexamination. Diabetes 2000, 49:677–683.

    Article  PubMed  CAS  Google Scholar 

  15. Morino K, Petersen K, Shulman G: Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 2006, 55:S9–S15.

    Article  PubMed  CAS  Google Scholar 

  16. Storgaard H, Jensen C, Bjornholm M, et al.: Dissociation between fat-induced in vivo insulin resistance and proximal insulin signaling in skeletal muscle in men at risk for type 2 diabetes. J Clin Endocrinol Metab 2004, 89:1301–1311.

    Article  PubMed  CAS  Google Scholar 

  17. Belfort R, Mandarino L, Kashyap S, et al.: Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes 2005, 54:1640–1648.

    Article  PubMed  CAS  Google Scholar 

  18. Virkamaki A, Korsheninnikova E, Seppala-Lindroos A, et al.: Intramyocellular lipid Is associated with resistance to in vivo Insulin actions on glucose uptake, antilipolysis, and early insulin signaling pathways in human skeletal muscle. Diabetes 2001, 50:2337–2343.

    Article  PubMed  CAS  Google Scholar 

  19. Thamer C, Machann J, Bachmann O, et al.: Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity. J Clin Endocrinol Metab 2003, 88:1785–1791.

    Article  PubMed  CAS  Google Scholar 

  20. Cusi K: Evolving concepts in lipotoxicity. In The American Association for the Study of Liver Disease Postgraduate Course. Alexandria, VA: American Association for the Study of Liver Disease; 2008:72–84.

    Google Scholar 

  21. Szendroedi J, Roden M: Ectopic lipids and organ function. Curr Opin Lipidol 2009, 20:50–56.

    Article  PubMed  CAS  Google Scholar 

  22. Reyna SM, Ghosh S, Tantiwong P, et al.: Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects. Diabetes 2008, 57:2595–2602.

    Article  PubMed  CAS  Google Scholar 

  23. Patti ME, Butte AJ, Crunkhorn S, et al.: Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 2003, 100:8466–8471.

    Article  PubMed  CAS  Google Scholar 

  24. De Filippis E, Alvarez G, Berria R, et al.: Insulin-resistant muscle is exercise resistant: evidence for reduced response of nuclear-encoded mitochondrial genes to exercise. Am J Physiol Endocrinol Metab 2008, 294:E607–E614.

    Article  PubMed  CAS  Google Scholar 

  25. Richardson DK, Kashyap S, Bajaj M, et al.: Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J Biol Chem 2005, 280:10290–10297.

    Article  PubMed  CAS  Google Scholar 

  26. Befroy DE, Petersen KF, Dufour S, et al.: Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes 2007, 56:1376–1381.

    Article  PubMed  CAS  Google Scholar 

  27. Cusi K, Kashyap S, Belfort R, et al.: Effects on insulin secretion and action of short-term reduction of plasma free fatty acids with acipimox in non-diabetic subjects genetically predisposed to type 2 diabetes. Am J Physiol Endocrinol Metab 2007, 292:E1775–E1781.

    Article  PubMed  CAS  Google Scholar 

  28. Cusi K: Nonalcoholic fatty liver disease in type 2 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2009, 16:141–149.

    PubMed  Google Scholar 

  29. Kashyap S, Belfort R, Cersosimo E, et al.: Chronic low-dose lipid infusion in healthy patients induces markers of endothelial activation independent of its metabolic effects. J Cardiometab Syndr 2008, 3:141–146.

    Article  PubMed  Google Scholar 

  30. Semple R, Sleigh A, Murgatroyd P, et al.: Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J Clin Invest 2009, 119:315–322.

    PubMed  CAS  Google Scholar 

  31. Tay C, Belfort R, Mathew M, Cusi K: A 2-day lipid or combined lipid-glucose infusion reproduce in healthy subjects the metabolic abnormalities seen in the metabolic syndrome. Diabetes 2006, 55(Suppl 1):A66.

    Google Scholar 

  32. Brassard P, Frisch F, Lavoie F, et al.: Impaired plasma nonesterified fatty acid tolerance is an early defect in the natural history of type 2 diabetes. J Clin Endocrinol Metab 2008, 93:837–844.

    Article  PubMed  CAS  Google Scholar 

  33. Civitarese A, Jenkinson C, Richardson D, et al.: Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of type 2 diabetes. Diabetologia 2004, 47:816–820.

    Article  PubMed  CAS  Google Scholar 

  34. Nolan C, Leahy J, Delghingaro-Augusto V, et al.: Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling. Diabetologia 2006, 49:2120–2130.

    Article  PubMed  CAS  Google Scholar 

  35. Mathew M, Darland C, Kumar P, et al.: Effect of obesity on insulin secretion in response to a 48-hour physiological increase in plasma FFA in Mexican-American subjects genetically predisposed to type 2 diabetes. Diabetes 2008, 56(Suppl 1):A389.

    Google Scholar 

  36. Gastaldelli A, Ferrannini E, Miyazaki Y, et al.: Beta cell dysfunction and glucose intolerance: results from the San Antonio metabolism (SAM) study. Diabetologia 2004, 47:31–39.

    Article  PubMed  CAS  Google Scholar 

  37. Unger R, Zhou Y: Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes 2001, 50(Suppl 1):S118–S121.

    Article  PubMed  CAS  Google Scholar 

  38. Nolan CJ, Madiraju MS, Delghingaro-Augusto V, et al.: Fatty acid signaling in the beta-cell and insulin secretion. Diabetes 2006, 55(Suppl 2):S16–S23.

    Article  PubMed  CAS  Google Scholar 

  39. Maedler K: Beta cells in type 2 diabetes-a crucial contribution to pathogenesis. Diabetes Obesity Metabolism 2008, 10:408–420.

    Article  CAS  Google Scholar 

  40. Delghingaro-Augusto V, Nolan C, Gupta D, et al.: Islet beta cell failure in the 60% pancreatectomised obese hyperlipidaemic Zucker fatty rat: severe dysfunction with altered glycerolipid metabolism without steatosis or a falling beta cell mass. Diabeteologia 2009 Mar 18 (Epub ahead of print).

  41. Amery CM, Round RA, Smith JM, Nattrass M: Elevation of plasma fatty acids by ten-hour intralipid infusion has no effect on basal or glucose-stimulated insulin secretion in normal man. Metabolism 2000, 49:450–454.

    Article  PubMed  CAS  Google Scholar 

  42. Balent B, Goswami G, Goodloe G, et al.: Acute elevation of NEFA causes hyperinsulinemia without effect on insulin secretion rate in healthy human subjects. Ann NY Acad Sci 2002, 967:535–543.

    Article  PubMed  CAS  Google Scholar 

  43. Storgaard H, Jensen C, Vaag A, et al.: Insulin secretion after short- and long-term low-grade free fatty acid infusion in men with increased risk of developing type 2 diabetes. Metabolism 2003, 52:885–894.

    Article  PubMed  CAS  Google Scholar 

  44. Paolisso G, Gambardella A, Amato L, et al.: Opposite effects of short- and long-term fatty acid infusion on insulin secretion in healthy subjects. Diabetologia 1995, 38:1295–1299.

    Article  PubMed  CAS  Google Scholar 

  45. Carpentier A, Mittelman SD, Bergman RN, et al.: Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation. Am J Physiol Endocrinol Metab 1999, 276:E1055–E1066.

    CAS  Google Scholar 

  46. Boden G, Chen X: Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. J Clin Invest 1995, 96:1261–1268.

    Article  PubMed  CAS  Google Scholar 

  47. Magnan C, Collins S, Berthault MF, et al.: Lipid infusion lowers sympathetic nervous activity and leads to increased beta-cell responsiveness to glucose. J Clin Invest 1999, 103:413–419.

    Article  PubMed  CAS  Google Scholar 

  48. Carpentier A, Mittelman SD, Bergman RN, et al.: Prolonged elevation of plasma free fatty acids impairs pancreatic beta-cell function in obese nondiabetic humans but not in individuals with type 2 diabetes. Diabetes 2000, 49:399–408.

    Article  PubMed  CAS  Google Scholar 

  49. Mathew M, Kumar P, Ali R, et al.: Insulin secretion in patients with impaired glucose tolerance (IGT) is readily susceptible to FFA-induced lipotoxicity. Diabetes 2008, 57(Suppl 1):A153.

    Google Scholar 

  50. Cusi K, Maezono K, Osman A, et al.: Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000, 105:311–320.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Cusi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cusi, K. Lessons learned from studying families genetically predisposed to type 2 diabetes mellitus. Curr Diab Rep 9, 200–207 (2009). https://doi.org/10.1007/s11892-009-0033-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-009-0033-6

Keywords

Navigation