Skip to main content

Advertisement

Log in

Ectopic fat and insulin resistance

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Ectopic fat is defined by the deposition of triglycerides within cells of non-adipose tissue that normally contain only small amounts of fat. Over the past decade, magnetic resonance spectroscopy has been used extensively for noninvasive quantification of intramyocellular, intrahepatocellular, and more recently myocardial and pancreatic lipids. In liver and muscle, triglyceride content usually correlates with whole-body and tissue-specific insulin sensitivity. However, fat mass and oxidative capacity influence this relationship, indicating that ectopic lipid content is not the only factor that explains insulin resistance. Ectopic lipids may rather serve as biomarkers of the balance between metabolic supply and demand in different states of insulin sensitivity. Consequently, ectopic lipid concentrations, particularly in the liver, decrease with lifestyle-or drug-induced improvement of insulin sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Krssak M, Roden M: The role of lipid accumulation in liver and muscle for insulin resistance in type 2 diabetes in humans. Rev Endocr Metab Dis 2004, 5:127–135.

    Article  CAS  Google Scholar 

  2. Bays II, Mandarino L, DeFronzo RA: Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 2004, 89:463–478.

    Article  PubMed  CAS  Google Scholar 

  3. Roden M: Muscle triglycerides and mitochondrial function: possible mechanism for the development of type 2 diabetes. Int J Obes Relat Metab Disord 2005, 29(Suppl 2):S111–S115.

    Article  CAS  Google Scholar 

  4. Kelley DE, McKolanis TM, Hegazi RA, et al.: Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol 2003, 285:E906–E916.

    CAS  Google Scholar 

  5. Roden M: Mechanisms of disease: hepatic steatosis in type 2 diabetes—pathogenesis and clinical relevance. Nat Clin Pract Endocrinol Metab 2006, 2:335–348.

    Article  PubMed  CAS  Google Scholar 

  6. Hwang JH, Pan JW, Heydari S, et al.: Regional differences in intramyocellular lipids in humans observed by in vivo 1H-MR spectroscopic imaging. J Appl Physiol 2001, 90:1267–1274.

    PubMed  CAS  Google Scholar 

  7. Szczepaniak LS, Babcock EE, Schick F, et al.: Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Physiol 1999, 276:E977–E989.

    PubMed  CAS  Google Scholar 

  8. Anderwald C, Bernoider E, Krssak M, et al.: Effects of insulin treatment in type 2 diabetic patients on intracellular lipid content in liver and skeletal muscle. Diabetes 2002, 51:3025–3032.

    Article  PubMed  CAS  Google Scholar 

  9. Szczepaniak LS, Dobbins RL, Metzger GJ, et al.: Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med 2003, 49:417–423.

    Article  PubMed  CAS  Google Scholar 

  10. Van der Meer RW, Doornbos J, Kozerke S, et al.: Metabolic imaging of myocardial triglyceride content: reproducibility of 1H MR spectroscopy with respiratory navigator gating in volunteers. Radiology 2007, 245:251–257.

    Article  PubMed  Google Scholar 

  11. Tushuizen ME, Bunck MC, Pouwels PJ, et al.: Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care 2007, 30:2916–2921.

    Article  PubMed  CAS  Google Scholar 

  12. Pan DA, Lillioja S, Kriketos AD, et al.: Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 1997, 46:983–988.

    Article  PubMed  CAS  Google Scholar 

  13. Phillips DI, Caddy S, Ilic V, et al.: Intramuscular triglyceride and muscle insulin sensitivity: evidence for a relationship in nondiabetic subjects. Metabolism 1996, 45:947–950.

    Article  PubMed  CAS  Google Scholar 

  14. Krssak M, Falk Petersen K, Dresner A, et al.: Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 1999, 42:113–116.

    Article  PubMed  CAS  Google Scholar 

  15. Jacob S, Machann J, Rett K, et al.: Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 1999, 48:1113–1119.

    Article  PubMed  CAS  Google Scholar 

  16. Kautzky-Willer A, Krssak M, Winzer C, et al.: Increased intramyocellular lipid concentration identifies impaired glucose metabolism in women with previous gestational diabetes. Diabetes 2003, 52:244–251.

    Article  PubMed  CAS  Google Scholar 

  17. Perseghin G, Lattuada G, Danna M, et al.: Insulin resistance, intramyocellular lipid content, and plasma adiponectin in patients with type 1 diabetes. Am J Physiol 2003, 285:E1174–E1181.

    CAS  Google Scholar 

  18. Sinha R, Dufour S, Petersen KF, et al.: Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes 2002, 51:1022–1027.

    Article  PubMed  CAS  Google Scholar 

  19. Goodpaster BH, Thaete FL, Kelley DE: Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am J Clin Nutr 2000, 71:885–892.

    PubMed  CAS  Google Scholar 

  20. Malenfant P, Joanisse DR, Thériault R, et al.: Fat content in individual muscle fibers of lean and obese subjects. Int J Obes Relat Metab Disord 2001, 25:1316–1321.

    Article  PubMed  CAS  Google Scholar 

  21. Goodpaster BH, He J, Watkins S, Kelley DE: Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 2001, 86:5755–5761.

    Article  PubMed  CAS  Google Scholar 

  22. Thamer C, Machann J, Bachmann O, et al.: Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity. J Clin Endocrinol Metab 2003, 88:1785–1791.

    Article  PubMed  CAS  Google Scholar 

  23. Krssak M, Petersen KF, Bergeron R, et al.: Intramuscular glycogen and intramyocellular lipid utilization during prolonged exercise and recovery in man: a 13C and 1H nuclear magnetic resonance spectroscopy study. J Clin Endocrinol Metab, 2000, 85:748–754.

    Article  PubMed  CAS  Google Scholar 

  24. Perseghin G, Scifo P, Danner M, et al.: Normal insulin sensitivity and IMCL content in overweight humans are associated with higher fasting lipid oxidation. Am J Physiol 2003, 284:E274–E280.

    Google Scholar 

  25. Bachmann OP, Dahl DB, Brechtel K, et al.: Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes 2001, 50:2579–2584.

    Article  PubMed  CAS  Google Scholar 

  26. Boden G, Lebed B, Schatz M, et al.: Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes 2001, 50:1612–1617.

    Article  PubMed  CAS  Google Scholar 

  27. Schrauwen-Hinderling VB, Kooi ME, Hesselink MK, et al.: Intramyocellular lipid content and molecular adaptations in response to a 1-week high-fat diet. Obes Res 2005, 13:2088–2094.

    Article  PubMed  CAS  Google Scholar 

  28. Stannard SR, Thompson MW, Fairbairn K, et al.: Fasting for 72 h increases intramyocellular lipid content in nondiabetic, physically fit men. Am J Physiol 2002, 283:E1185–E1191.

    CAS  Google Scholar 

  29. Brehm A, Krssak M, Schmid AI, et al.: Increased lipid availability impairs insulin-stimulated ATP synthesis in human skeletal muscle. Diabetes 2006, 55:136–140.

    Article  PubMed  CAS  Google Scholar 

  30. Bruce CR, Anderson MJ, Carey AL, et al.: Muscle oxidative capacity is a better predictor of insulin sensitivity than lipid status. J Clin Endocrinol Metab 2003, 88:5444–5451.

    Article  PubMed  CAS  Google Scholar 

  31. Petersen KF, Dufour S, Shulman GI.: Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med 2005, 2:e233.

    Article  PubMed  Google Scholar 

  32. Szendroedi J, Schmid AI, Chmelik M, et al.: Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. PLoS Med 2007, 4:e154.

    Article  PubMed  Google Scholar 

  33. Seppälä-Lindroos A, Vehkavaara S, Häkkinen AM, et al.: Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 2002, 87:3023–3028.

    Article  PubMed  Google Scholar 

  34. Tiikkainen M, Tamminen M, Häkkinen AM, et al.: Liver-fat accumulation and insulin resistance in obese women with previous gestational diabetes. Obes Res 2002, 10:859–867.

    Article  PubMed  CAS  Google Scholar 

  35. Mayerson AB, Hundal RS, Dufour S, et al.: The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 2000, 51:797–802.

    Article  Google Scholar 

  36. Krssak M, Brehm A, Bernroider E, et al.: Postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes, 53:3048–3056.

  37. Bisshop PH, de Metz J, Ackermans MT, et al.: Dietary fat content alters insulin-mediated glucose metabolism in healthy men. Am J Clin Nutr 2001, 73:554–559.

    Google Scholar 

  38. Samuel VT, Liu ZX, Wang A, et al.: Inhibition of protein kinase C epsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 2007, 117:739–745.

    Article  PubMed  CAS  Google Scholar 

  39. Petersen KF, Dufour S, Savage DB, et al.: The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A 2007, 104:12587–12594.

    Article  PubMed  CAS  Google Scholar 

  40. Rutter MK, Parise H, Benjamin EJ, et al.: Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex related differences in the Framingham Heart Study. Circulation 2003, 107:448–454.

    Article  PubMed  CAS  Google Scholar 

  41. Zib I, Jacob AN, Lingvay I, et al.: Effect of pioglitazone therapy on myocardial and hepatic steatosis in insulin-treated patients with type 2 diabetes. J Investig Med 2007, 55:230–236.

    Article  PubMed  CAS  Google Scholar 

  42. McGavock JM, Lingvay I, Zip I, et al.: Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 2007, 116:1170–1175.

    Article  PubMed  Google Scholar 

  43. Frost GS, Goff LM, Hamilton G, et al.: Carbohydrate-induced manipulation of insulin sensitivity independently of intramyocellular lipids. Br J Nutr 2003, 89:365–375.

    Article  PubMed  Google Scholar 

  44. Brechtel K, Niess AM, Machann J, et al.: Utilisation of intramyocellular lipids (IMCLs) during exercise as assessed by proton magnetic resonance spectroscopy (1H-MRS). Horm Metab Res 2001, 33:63–66.

    Article  PubMed  CAS  Google Scholar 

  45. Belfort R, Harrison SA, Brown K, et al.: A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 2006, 355:2297–2307.

    Article  PubMed  CAS  Google Scholar 

  46. Carey DG, Cowin GJ, Galloway GJ, et al.: Effect of rosiglitazone on insulin sensitivity and body composition in type 2 diabetic patients [corrected]. Obes Res 2002, 10:1008–1015.

    Article  PubMed  CAS  Google Scholar 

  47. Tiikkainen M, Häkkinen AM, Korsheninnikova E, et al.: Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes. Diabetes 2004, 53:2169–2176.

    Article  PubMed  CAS  Google Scholar 

  48. Teranishi T, Ohara T, Maeda K, et al.: Effects of pioglitazone and metformin on intracellular lipid content in liver and skeletal muscle of individuals with type 2 diabetes mellitus. Metabolism 2007, 56:1418–1424.

    Article  PubMed  CAS  Google Scholar 

  49. Brehm A: Comparison of the effects of glimepiride vs. pioglitazone+nateglinide therapy on insulin sensitivity and ectopic fat storage in well-controlled type 2 diabetes. Diabetes 2005, 54(Suppl 1):A381.

    Google Scholar 

  50. Juurinen L, Tiikkainen M, Häkkinen AM, et al.: Effects of insulin therapy on liver fat content and hepatic insulin sensitivity in patients with type 2 diabetes. Am J Physiol 2007, 292:E829–E835.

    CAS  Google Scholar 

  51. Juurinen L, Kotronen A, Granér M, et al.: Rosiglitazone reduces liver fat and insulin requirements and improves hepatic insulin sensitivity and glycemic control in patients with type 2 diabetes requiring high insulin doses. J Clin Endocrinol Metab 2008, 93:118–124.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Roden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lettner, A., Roden, M. Ectopic fat and insulin resistance. Curr Diab Rep 8, 185–191 (2008). https://doi.org/10.1007/s11892-008-0032-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-008-0032-z

Keywords

Navigation