Skip to main content

Advertisement

Log in

Incretins and the development of type 2 diabetes

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The incretin hormones gastric inhibitory polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are released in response to nutrient ingestion and potentiate glucosestimulated insulin secretion from pancreatic β cells. The augmentation of postprandial insulin secretion by such gastrointestinal hormones is called the incretin effect. The incretin effect is almost completely absent in patients with type 2 diabetes. This is due to 1) an approximate 15% reduction in postprandial GLP-1 secretion and 2) a near total loss of insulinotropic activity of GIP. This review article summarizes clinical studies on abnormalities in the secretion and insulinotropic effects of GIP and GLP-1 in patients with type 2 diabetes as well as in individuals at high risk. A significant proportion of first-degree relatives are characterized by a reduced insulinotropic response to exogenous GIP. Nevertheless, this phenomenon does not predispose to a more rapid deterioration in glucose tolerance or conversion to impaired glucose tolerance or diabetes. Therefore, although there are hints of early abnormalities in incretin secretion and action in prediabetic populations, it has not been proven that such phenomena are central to the pathogenesis of type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Moore B, Edie ES, Abram JH: On the treatment of diabetes mellitus by acid extract of duodenal mucous membrane. Biochem J 1906, 1:28–38.

    PubMed  CAS  Google Scholar 

  2. Berson SA, Yallow RS: Immunoassay of plasma insulin. Ciba Found Colloquia Endocrinol 1962, 41:182–201.

    Google Scholar 

  3. Perley MJ, Kipnis DM: Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest 1967, 46:1954–1962.

    PubMed  CAS  Google Scholar 

  4. Nauck MA, Homberger E, Siegel EG, et al.: Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 1986, 63:492–498.

    PubMed  CAS  Google Scholar 

  5. Creutzfeldt W: The incretin concept today. Diabetologia 1979, 16:75–85.

    Article  PubMed  CAS  Google Scholar 

  6. Brown JC, Pederson RA, Jorpes E, Mutt V: Preparation of highly active enterogastrone. Can J Physiol Pharmacol 1969, 47:113–114.

    PubMed  CAS  Google Scholar 

  7. Brown JC, Dryburgh JR: A gastric inhibitory polypeptide II. The complete amino acid sequence. Can J Biochem 1971, 49:867–872.

    Article  PubMed  CAS  Google Scholar 

  8. Buchan AMJ, Polak JM, Capella C, et al.: Electron immunocytochemical evidence of the K cell localisation of gastric inhibitory polypeptide (GIP) in man. Histochemistry 1978, 56:37–44.

    Article  PubMed  CAS  Google Scholar 

  9. Buffa B, Polak JM, Pearse AGE, et al.: Identification of the intestinal cell storing gastric inhibitory polypeptide. Histochemistry 1975, 43:249–255.

    Article  PubMed  CAS  Google Scholar 

  10. Krarup T: Immunoreactive gastric inhibitory polypeptide. Endocr Rev 1988, 9:122–133.

    Article  PubMed  CAS  Google Scholar 

  11. Bell GI, Sanchez-Pescador R, Laybourn PJ, Najarian RC: Exon duplication and divergence in the human preproglucagon gene. Nature 1983, 304:368–371.

    Article  PubMed  CAS  Google Scholar 

  12. Bell GI, Santerre RF, Mullenbach GT: Hamster preproglucagon gene contains the sequence of glucagon and two related peptides. Nature 1983, 302:716–718.

    Article  PubMed  CAS  Google Scholar 

  13. Ørskov C, Knuhtsen S, Baldissera FG, et al.: Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 1986, 119:1467–1475.

    PubMed  Google Scholar 

  14. Ørskov C, Holst JJ, Seier-Poulsen S, Kirkegaard P: Pancreatic and intestinal processing of proglucagon in man. Diabetologia 1987, 30:874–881.

    PubMed  Google Scholar 

  15. Creutzfeldt W, Ebert R: New developments in the incretin concept. Diabetologia 1985, 28:565–573.

    Article  PubMed  CAS  Google Scholar 

  16. Nauck MA, Bartels E, Ørskov C, et al.: Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7–36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol Metab 1993, 76:912–917.

    Article  PubMed  CAS  Google Scholar 

  17. NauckMA, El-Ouaghlidi A, Gabrys B, et al.: Secretion of incretin hormones (GIP and GLP-1) and incretin effect after oral glucose in first-degree relatives of patients with type 2 diabetes. Regul Pept 2004, 122:209–217. This study found an intact secretion of GIP and GLP-1 and a normal size of the incretin effect in first-degree relatives of patients with type 2 diabetes.

    Article  PubMed  CAS  Google Scholar 

  18. Nauck M, Stöckmann F, Ebert R, Creutzfeldt W: Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 1986, 29:46–54.

    Article  PubMed  CAS  Google Scholar 

  19. Meier JJ, Hücking K, Holst JJ, et al.: Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes. Diabetes 2001, 50:2497–2504.

    Article  PubMed  CAS  Google Scholar 

  20. Nyholm B, Walker M, Gravholt CH, et al.: Twenty-fourhour insulin secretion rates, circulating concentrations of fuel substrates and gut incretin hormones in healthy offspring of type II (non-insulin-dependent) diabetic parents: evidence of several aberrations. Diabetologia 1999, 42:1314–1323.

    Article  PubMed  CAS  Google Scholar 

  21. Rask E, Olsson T, Soderberg S, et al.: Insulin secretion and incretin hormones after oral glucose in non-obese subjects with impaired glucose tolerance. Metabolism 2004, 53:624–631.

    Article  PubMed  CAS  Google Scholar 

  22. Meier JJ, Gallwitz B, Askenas M, et al.: Secretion of incretin hormones and the insulinotropic effect of gastric inhibitory polypeptide (GIP) in women with a history of gestational diabetes. Diabetologia 2005, 48:1872–1881. Even though first-degree relatives of patients with type 2 diabetes exhibited a significant reduction in the insulinotropic effect of GIP, the cohort of women with a history of gestational diabetes examined in this study displayed no abnormalities in the enteroinsular axis.

    Article  PubMed  CAS  Google Scholar 

  23. Muscelli E, Mari A, Astiarraga BD, et al.: Glucagon-like peptide-1 and beta-cell function in subjects with normal or impaired glucose tolerance [abstract]. Diabetologia 2005, 48(suppl 1):A224.

    Google Scholar 

  24. Ørskov C, Rabenh¢j L, Wettergren A, et al.: Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide 1 in humans. Diabetes 1994, 43:535–539.

    Article  PubMed  Google Scholar 

  25. Deacon CF, Plamboeck A, Moller S, Holst JJ: GLP-1-(9-36) amide reduces blood glucose in anesthetized pigs by a mechanism that does not involve insulin secretion. Am J Physiol Endocrinol Metab 2002, 282:E873–879.

    PubMed  CAS  Google Scholar 

  26. Vahl TP, Paty BW, Fuller BD, et al.: Effects of GLP-1-(7-36)NH2, GLP-1-(7-37), and GLP-1-(9-36)NH2 on intravenous glucose tolerance and glucose-induced insulin secretion in healthy humans. J Clin Endocrinol Metab 2003, 88:1772–1779.

    Article  PubMed  CAS  Google Scholar 

  27. Meier JJ, Gethmann A, Nauck MA, itet al.: The glucagonlike peptide 1 metabolite GLP-1 (9-36)amide reduces postprandial glycemia independently of gastric emptying and insulin secretion in humans. Am J Physiol Endocrinol Metab 2006, Jan 10; [Epub ahead of print].

  28. Ørskov C, Jeppesen J, Madsbad S, Holst JJ: Proglucagon products in plasma of noninsulin-dependent diabetics and nondiabetic controls in the fasting state and after oral glucose and intravenous arginine. J Clin Invest 1991, 87:415–423.

    PubMed  Google Scholar 

  29. Nauck MA, Heimesaat MM, Ørskov C, et al.: Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993, 91:301–307.

    PubMed  CAS  Google Scholar 

  30. Toft-Nielsen MB, Damholt MB, Madsbad S, et al.: Determinants of impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 2001, 86:3717–3723.

    Article  PubMed  CAS  Google Scholar 

  31. Vilsbøll T, Krarup T, Deacon CF, et al.: Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001, 50:609–613. Using specific radioimmunoassays, this study reported a deficient secretion of intact GLP-1, but normal GIP secretion in patients with type 2 diabetes.

    Article  PubMed  Google Scholar 

  32. Mannucci E, Pala L, Ciani S, et al.: Hyperglycaemia increases dipeptidyl peptidase IV activity in diabetes mellitus. Diabetologia 2005, 48:1168–1172.

    Article  PubMed  CAS  Google Scholar 

  33. Ward WK, Bolgiano DC, McKnight B, et al.: Diminished B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Invest 1984, 74:1318–1328.

    PubMed  CAS  Google Scholar 

  34. Meier JJ, Butler PC: Insulin secretion. In Endocrinology, edn 5. Edited by DeGroot LJ, Jameson JL. Philadelphia: Elsevier Saunders; 2005: 961–973.

    Google Scholar 

  35. Göke R, Fehmann HC, Linn T, et al.: Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem 1993, 268:19650–19655.

    PubMed  Google Scholar 

  36. Edwards CM, Todd JF, Mahmoudi M, et al.: Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39. Diabetes 1999, 48:86–93.

    Article  PubMed  CAS  Google Scholar 

  37. Nauck MA: Glucagonlike peptide 1. Curr Opin Endocrinol Diabetes 1997, 4:256–261.

    Article  Google Scholar 

  38. Meier JJ, Kemmeries G, Holst JJ, Nauck MA: Erythromycin antagonises the deceleration of gastric emptying by glucagon-like peptide 1 (GLP-1) and unmasks its insulinotropic effect in healthy subjects. Diabetes 2005, 54:2212–2218.

    Article  PubMed  CAS  Google Scholar 

  39. KjemsLL, Holst JJ, Vølund A, Madsbad S: The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 2003, 52:380–386. Even though the insulinotropic effect of GLP-1 in patients with type 2 diabetes is preserved to a much larger extent than that of GIP, this study demonstrates a significant impairment in β-cell responsiveness to GLP-1 in type 2 diabetes.

    Article  PubMed  CAS  Google Scholar 

  40. Nauck MA, Kleine N, Ørskov C, et al.: Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993, 36:741–744.

    Article  PubMed  CAS  Google Scholar 

  41. Rachman J, Gribble FM, Levy JC, Turner RC: Near-normalization of diurnal glucose concentrations by continuous administration of glucagon-like peptide 1 (GLP-1) in subjects with NIDDM. Diabetologia 1997, 40:205–211.

    Article  PubMed  CAS  Google Scholar 

  42. Nauck MA, Sauerwald A, Ritzel R, et al.: Influence of glucagon-like peptide 1 on fasting glycemia in type 2 diabetic patients treated with insulin after sulfonylurea failure. Diabetes Care 1988, 21:1925–1931.

    Article  Google Scholar 

  43. Willms B, Idowu K, Holst JJ, et al.: Overnight GLP-1 normalizes fasting but not daytime plasma glucose values in NIDDM patients. Exp Clin Endocrinol Diabetes 1998, 106:103–107.

    Article  PubMed  CAS  Google Scholar 

  44. Meier JJ, Gallwitz B, Salmen S, et al.: Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagonlike peptide 1 in patients with type 2 diabetes. J Clin Endocrinol Metab 2003, 88:2719–2725.

    Article  PubMed  CAS  Google Scholar 

  45. Toft-Nielsen MB, Madsbad S, Holst JJ: Determinants of the effectiveness of glucagon-like peptide-1 in type 2 diabetes. J Clin Endocrinol Metab 2001, 86:3853–3860.

    Article  PubMed  CAS  Google Scholar 

  46. VilsbøllT, Krarup T, Madsbad S, Holst JJ: Defective ampli-fication of the late phase insulin response to glucose by GIP in obese type II diabetic patients. Diabetologia 2002, 45:1111–1119. This study shows that the impairment in the insulinotropic effect of GIP in patients with type 2 diabetes specifically affects the late-phase response, whereas the early-phase response to GIP administration is largely preserved.

    Article  PubMed  CAS  Google Scholar 

  47. Nauck MA: Glucagon-like peptide 1 (GLP-1): a potent gut hormone with a possible therapeutic perspective. Acta Diabetol 1998, 35:117–129.

    Article  PubMed  CAS  Google Scholar 

  48. Nauck MA, Niedereichholz U, Ettler R, et al.: Glucagonlike peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol Endocrinol Metab 1997, 273:E981-E988.

    CAS  Google Scholar 

  49. Willms B, Werner J, Holst JJ, et al.: Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7-36) amide in type 2 (noninsulin-dependent) diabetic patients. J Clin Endocrinol Metab 1996, 81:327–332.

    Article  PubMed  CAS  Google Scholar 

  50. Flint A, Raben A, Astrup A, Holst JJ: Glucagon-like peptide-1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998, 101:515–520.

    Article  PubMed  CAS  Google Scholar 

  51. Gutzwiller JP, Drewe J, Göke B, et al.: Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol Regul Integr Comp Physiol 1999, 276:R1541-R1544.

    CAS  Google Scholar 

  52. Ross SA, Brown JC, Dupré J: Hypersecretion of gastric inhibitory polypeptide following oral glucose in diabetes mellitus. Diabetes 1977, 26:525–529.

    Article  PubMed  CAS  Google Scholar 

  53. Ebert R, Creutzfeldt W: Gastric inhibitory polypeptide. Clin Gastroenterol 1980, 9:679–698.

    PubMed  CAS  Google Scholar 

  54. Creutzfeldt W, Ebert R, Nauck M, Stöckmann F: Disturbances in the entero-insular axis. Scand J Gastroenterol Suppl 1983, 82:111–119.

    PubMed  CAS  Google Scholar 

  55. Jones IR, Owens DR, Luzio S, et al.: The glucose dependent insulinotropic polypeptide response to oral glucose and mixed meals is increased in patients with type 2 (noninsulin-dependent) diabetes mellitus. Diabetologia 1989, 32:668–677.

    Article  PubMed  CAS  Google Scholar 

  56. Theodorakis MJ, Carlson O, Muller DC, Egan JM: Elevated plasma glucose-dependent insulinotropic polypeptide associates with hyperinsulinemia in impaired glucose tolerance. Diabetes Care 2004, 27:1692–1698.

    Article  PubMed  CAS  Google Scholar 

  57. Jorde R, Amland PF, Burhol PG, Giercksy KE: What are "physiological" plasma levels in man after intravenous infusion of porcine GIP? Scand J Gastroenterol 1985, 20:268–271.

    PubMed  CAS  Google Scholar 

  58. Sarson DL, Wood SM, Kansal PC, Bloom SR: Glucosedependent insulinotropic polypeptide augmentation of insulin: physiology or pharmacology? Diabetes 1984, 33:389–393.

    Article  PubMed  CAS  Google Scholar 

  59. Krarup T, Saurbrey N, Moody AJ, et al.: Effect of porcine gastric inhibitory polypeptide on beta-cell function in type I and type II diabetes mellitus. Metabolism 1988, 36:677–682.

    Article  Google Scholar 

  60. Meier JJ, Gallwitz B, Kask B, et al.: Stimulation of insulin secretion by intravenous bolus injection and continuous infusion of gastric inhibitory polypeptide (GIP) in patients with type 2 diabetes and healthy control subjects. Diabetes 2004, 53(suppl 3):S220-S224.

    Article  PubMed  CAS  Google Scholar 

  61. Vilsbøll T, Krarup T, Madsbad S, Holst JJ: Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept 2003, 114:115–121.

    Article  PubMed  CAS  Google Scholar 

  62. Horowitz M, Nauck MA: To be or not to be—an incretin or enterogastrone? Gut 2006, 55:148–150.

    Article  PubMed  CAS  Google Scholar 

  63. Holst JJ, Gromada J, Nauck MA: The pathogenesis of NIDDM involves a defective expression of the GIP receptor. Diabetologia 1997, 40:984–986.

    Article  PubMed  CAS  Google Scholar 

  64. Gromada J, Holst JJ, Rorsman P: Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1. Pflugers Arch 1998, 435:583–594.

    Article  PubMed  CAS  Google Scholar 

  65. Meier JJ, Nauck MA, Schmidt WE, Gallwitz B: Gastric inhibitory polypeptide (GIP): the neglected incretin revisited. Regul Pept 2002, 107:1–13.

    Article  PubMed  CAS  Google Scholar 

  66. Lynn PC, Pamir N, Ng EH, et al.: Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats. Diabetes 2001, 50:1004–1011.

    Article  PubMed  CAS  Google Scholar 

  67. Lynn FC, Thompson SA, Pospisilik JA, et al.: A novel pathway for regulation of glucose-dependent insulinotropic polypeptide (GIP) receptor expression in beta cells. FASEB J 2003, 17:91–93.

    PubMed  CAS  Google Scholar 

  68. Meier JJ, Nauck MA, Siepmann N, et al.: Similar insulin secretory response to a GIP bolus injection at euglycemia in first-degree relatives of patients with type 2 diabetes and control subjects. Metabolism 2003, 52:1579–1585.

    Article  PubMed  CAS  Google Scholar 

  69. VilsbøllT, Knop FK, Krarup T, et al.: The pathophysiology of diabetes involves a defective amplification of the latephase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype. J Clin Endocrinol Metab 2003, 88:4897–4903. A reduction in the insulinotropic effect of GIP is detectable not only in patients with type 2 diabetes, but also in other types of diabetes. This indicates that the loss of GIP activity in type 2 diabetes is unlikely to be due to a genetic defect in these subjects, but rather goes along with a general impairment in β-cell function.

    Article  PubMed  CAS  Google Scholar 

  70. El-Ouaghlidi A, Holle H, Nauck MA: Reduced insulinotropic action of GIP in type 2 diabetes is not caused by tachyphylaxis [abstract]. Diabetes 2005, 54(suppl 1):A85.

    Google Scholar 

  71. Tuomilehto J, Lindstrom J, Eriksson JG, et al.: Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001, 344:1343–1350.

    Article  PubMed  CAS  Google Scholar 

  72. Matthews DR, Hosker JP, Rudenski AS, et al.: Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28:412–419.

    Article  PubMed  CAS  Google Scholar 

  73. Kwan EP, Gaisano HY: Glucagon-like peptide 1 regulates sequential and compound exocytosis in pancreatic islet beta-cells. Diabetes 2005, 54:2734–2743.

    Article  PubMed  CAS  Google Scholar 

  74. Holz GG, Kuhtreiber WM, Habener JF: Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 1993, 361:362–365.

    Article  PubMed  CAS  Google Scholar 

  75. Ritzel R, Schulte M, Porksen N, et al.: Glucagon-like peptide 1 increases secretory burst mass of pulsatile insulin secretion in patients with type 2 diabetes and impaired glucose tolerance. Diabetes 2001, 50:776–784.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Nauck MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, J.J., Nauck, M.A. Incretins and the development of type 2 diabetes. Curr Diab Rep 6, 194–201 (2006). https://doi.org/10.1007/s11892-006-0034-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-006-0034-7

Keywords

Navigation