Skip to main content
Log in

Fatty acid—induced inflammation and insulin resistance in skeletal muscle and liver

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Plasma free fatty acid (FFA) levels are elevated in obesity. FFA, by causing insulin resistance in muscle, liver, and endothelial cells, contributes to the development of type 2 diabetes mellitus (T2DM), hypertension, dyslipidemia, and nonalcoholic fatty liver disease (NAFLD). The mechanism through which FFA induces insulin resistance involves intramyocellular and intrahepatocellular accumulation of triglycerides and diacylglycerol, activation of several serine/ threonine kinases, reduction in tyrosine phosphorylation of the insulin receptor substrate (IRS)-1/2, and impairment of the IRS/phosphatidylinositol 3-kinase pathway of insulin signaling. FFA also produces low-grade inflammation in skeletal muscle and liver through activation of nuclear factor-èB, resulting in release of several proinflammatory and proatherogenic cytokines. Thus, elevated FFA levels (due to obesity or to high-fat feeding) cause insulin resistance in skeletal muscle and liver, which contributes to the development of T2DM, and produce low-grade inflammation, which contributes to the development of atherosclerotic vascular diseases and NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Mokdad AN, Bowman BA, Ford ES: The continuing epidemics of obesity and diabetes in the United States. JAMA 2001, 286:1195–1200.

    Article  PubMed  CAS  Google Scholar 

  2. Bray GA: Medical consequences of obesity. J Clin Endocrinol Metab 2004, 89:2583–2589.

    Article  PubMed  CAS  Google Scholar 

  3. Boden G: Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997, 46:3–10.

    Article  PubMed  CAS  Google Scholar 

  4. Tataranni PA, Ortega E: A burning question: does an adipokine-induced activation of the immune system mediate the effect of overnutrition on type 2 diabetes? Diabetes 2005, 54:917–927.

    Article  PubMed  CAS  Google Scholar 

  5. Reaven GM: Role of insulin resistance in human disease. Diabetes 1988, 37:1595–1607.

    Article  PubMed  CAS  Google Scholar 

  6. Ingelsson E, Sundstrom J, Arnlov J, et al.: Insulin resistance and risk of congestive heart failure. JAMA 2005, 294:334–341.

    Article  PubMed  CAS  Google Scholar 

  7. Kershaw EE, Flier JS: Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004, 89:2548–2556.

    Article  PubMed  CAS  Google Scholar 

  8. Boden G, Shulman GI: Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 2002, 32:14–23.

    Article  PubMed  CAS  Google Scholar 

  9. Santomauro ATMG, Boden G, Silva M, et al.: Overnight lowering of free fatty acids with acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes 1999, 48:1836–1841.

    Article  PubMed  CAS  Google Scholar 

  10. Randle PJ, Garland PB, Hales CN, Newsholme EA: The glucose-fatty acid cycle, its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963, 1:785–789.

    Article  PubMed  CAS  Google Scholar 

  11. Boden G, Chen X: Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. J Clin Invest 1995, 96:1261–1268.

    PubMed  CAS  Google Scholar 

  12. Dresner A, Laurent D, Marcucci M, et al.: Effects of free fatty acids on glucose transport and IRS-1 associated phosphatidylinositol 3-kinase activity. J Clin Invest 1999, 103:253–259.

    PubMed  CAS  Google Scholar 

  13. Boden G, Lebed B, Schatz M, et al.: Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes 2001, 50:1612–161.

    Article  PubMed  CAS  Google Scholar 

  14. Ravikumar B, Carey PE, Snaar JEM, et al.: Real-time assessment of postprandial fat storage in liver and skeletal muscle in health and type 2 diabetes. Am J Physiol Endocrinol Metab 2005, 288:E789-E797.

    Article  PubMed  CAS  Google Scholar 

  15. Itani SI, Ruderman NB, Schmieder F, Boden G: Lipidinduced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 2002, 51:2005–2011. First demonstration that FFAs activate PKC and NF-èB in human skeletal muscle in vivo.

    Article  PubMed  CAS  Google Scholar 

  16. Farese R: Protein kinase C. In Diabetes Mellitus: A Fundamental and Clinical Text. Edited by LeRoith D, et al. Philadelphia: Lippincott, Williams and Wilkinson; 2004:301–316.

    Google Scholar 

  17. Yu C, Chen Y, Cline GW, et al.: Mechanism by which fatty acids inhibit activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 2002, 277:50230–50236.

    Article  PubMed  CAS  Google Scholar 

  18. Hotamisligil GS: Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes 2005, 54:S73-S78.

    Article  PubMed  CAS  Google Scholar 

  19. Nguyen MTA, Satoh H, Favelyukis S, et al.: JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem 2005, 280:35361–35371.

    Article  PubMed  CAS  Google Scholar 

  20. Kim JK, Fillmore JJ, Chen Y, tet al.: Tissue-specific overexpression of lipoprotein lipase causes tissue specific insulin resistance. Proc Natl Acad Sci U S A 2001, 98:7522–7527.

    Article  PubMed  CAS  Google Scholar 

  21. Chen HC, Stone SJ, Zhou P, et al.: Dissociation of obesity and impaired glucose disposal in mice overexpressing acyl coenzyme A: diacylglycerol acyltransferase 1 in adipose tissue. Diabetes 2002, 51:3189–3195.

    Article  PubMed  CAS  Google Scholar 

  22. Ferrannini E, Barrett E, Bevilacqua S, DeFronzo R: Effect of fatty acids on glucose production and utilization in man. J Clin Invest 1993, 72:1737–1747.

    Google Scholar 

  23. Bevilacqua S, Buzzigoli G, Bonadonna R, et al.: Operation of Randle’s cycle in patients with NIDDM. Diabetes 1990, 39:383–389.

    Article  PubMed  CAS  Google Scholar 

  24. Fanelli C, Calderone S, Epifano L, et al.: Demonstration of a critical role for free fatty acids in mediating counterregulatory stimulation of gluconeogenesis and suppression of glucose utilization in humans. J Clin Invest 1993, 92:1617–1622.

    PubMed  CAS  Google Scholar 

  25. Boden G, Chen X, Ruiz J, et al.: Mechanisms of fatty acidinduced inhibition of glucose uptake. J Clin Invest 1994, 93:2438–2446.

    PubMed  CAS  Google Scholar 

  26. Boden G, Cheung P, Stein TP, et al.: FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiol 2002, 283:E12-E19.

    CAS  Google Scholar 

  27. Hanson RW, Reshef L: Regulation of phosphoenolpyruvate carboxykinase mRNA in rat liver and kidney: effects of insulin and cyclic AMP. Annu Rev Biochem 1997, 66:581–611.

    Article  PubMed  CAS  Google Scholar 

  28. Jomain-Baum M, Hanson RW: Regulation of hepatic gluconeogenesis in the guinea pig by fatty acids and ammonia. J Biol Chem 1975, 250:8978–8985.

    PubMed  CAS  Google Scholar 

  29. Sasaki K, Cripe TP, Koch SR, et al.: Multi-hormonal regulation of phosphoenolpyruvate carboxykinase gene transcription: the dominant role of insulin. J Biol Chem 1984, 259:15242–15251.

    PubMed  CAS  Google Scholar 

  30. Boden G, Chen X, Stein TP: Gluconeogenesis in moderately and severely hyperglycemic patients with type 2 diabetes mellitus. Am J Physiol 2001, 280:E23-E30.

    CAS  Google Scholar 

  31. Gastaldelli A, Toschi E, Pettiti M, et al.: Effect of physiological hyperinsulinemia on gluconeogenesis in nondiabetic subjects and in type 2 diabetic patients. Diabetes 2001, 50:1807–1812.

    Article  PubMed  CAS  Google Scholar 

  32. Magnusson I, Rothman DL, Katz LD, et al.: Increased rate of gluconeogenesis in type II diabetes mellitus. J Clin Invest 1992, 90:1323–1327.

    Article  PubMed  CAS  Google Scholar 

  33. Lam TKT, Yoshii H, Haber A, et al.: Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta. Am J Physiol 2002, 283:E682-E691.

    CAS  Google Scholar 

  34. Boden G, She P, Mozzoli M, et al.: Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes 2005, 54:3458–3465. Demonstration that FFAs activate PKC-δ, IKK-ß, and NF-kB in rat liver.

    Article  PubMed  CAS  Google Scholar 

  35. Cai D, Yuan M, Frantz DF, et al.: Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005, 11:183–190.

    Article  PubMed  CAS  Google Scholar 

  36. Chung S, Brown JM, Provo JN, et al.: Conjugated linoleic acid promotes human adipocyte insulin resistance through NFkappaB-dependent cytokine production. J Biol Chem 2005, 280:38445–38456.

    Article  PubMed  CAS  Google Scholar 

  37. Barnes PJ, Karin M: Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997, 336:1066–1071.

    Article  PubMed  CAS  Google Scholar 

  38. Xu H, Barnes GT, Yang Q, et al.: Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003, 112:1821–1830.

    Article  PubMed  CAS  Google Scholar 

  39. Weisberg SP, McCann D, Desai M, et al.: Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003, 112:1796–1808.

    Article  PubMed  CAS  Google Scholar 

  40. Richardson DK, Kashyap, Bajaj M, et al.: Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J Biol Chem 2005, 280:10290–10297.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guenther Boden MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boden, G. Fatty acid—induced inflammation and insulin resistance in skeletal muscle and liver. Curr Diab Rep 6, 177–181 (2006). https://doi.org/10.1007/s11892-006-0031-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-006-0031-x

Keywords

Navigation