Skip to main content

Advertisement

Log in

Inflammation and emerging risk factors in diabetes mellitus and atherosclerosis

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus and atherosclerosis are complex and progressive conditions that share several common antecedents. Recent data suggest that inflammation may play a central role in the origins and complications of cardiovascular disease and, possibly, type 2 diabetes mellitus. C-reactive protein and plasminogen activator inhibitor-1 are circulating markers of low-grade inflammation, thrombosis, and vascular injury. Together with homocysteine, they have been associated with the underlying inflammatory processes and are considered to be "nontraditional" risk factors of atherosclerosis. The role of their measurement in clinical practice remains unclear. In this article, we review the available evidence demonstrating a link between inflammation, cardiovascular disease, and diabetes. We discuss how therapeutic agents used for both cardiovascular disease and diabetes modulate the inflammatory responses and possibly attenuate the complications of these two chronic disorders that cause significant morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Colwell JA: Vascular thrombosis in type II diabetes mellitus. Diabetes 1993, 42:8–11.

    PubMed  CAS  Google Scholar 

  2. Gu K, Cowie CC, Harris MI: Diabetes and decline in heart disease mortality in US adults. JAMA 1999, 281:1291–1297.

    Article  PubMed  CAS  Google Scholar 

  3. Ridker PM: Evaluating novel cardiovascular risk factors: can we better predict heart attacks? Ann Intern Med 1999, 130:933–937.

    PubMed  CAS  Google Scholar 

  4. Barnes PJ, Karin M: Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997, 336:1066–1071.

    Article  PubMed  CAS  Google Scholar 

  5. De Caterina R, Libby P, Peng HB, et al.: Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995, 96:60–68.

    Article  PubMed  Google Scholar 

  6. Lee RT, Yamamoto C, Feng Y, et al.: Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells. J Biol Chem 2001, 276:13847–13851.

    PubMed  CAS  Google Scholar 

  7. Ross R: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993, 362:801–809.

    Article  PubMed  CAS  Google Scholar 

  8. Roivainen M, Viik-Kajander M, Palosuo T, et al.: Infections, inflammation, and the risk of coronary heart disease. Circulation 2000, 101:252–257.

    PubMed  CAS  Google Scholar 

  9. Vita JA, Loscalzo J: Shouldering the risk factor burden: infection, atherosclerosis, and the vascular endothelium. Circulation 2002, 106:164–166.

    Article  PubMed  Google Scholar 

  10. Stemme S, Faber B, Holm J, et al.: T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci USA 1995, 92:3893–3897.

    Article  PubMed  CAS  Google Scholar 

  11. Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW: C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 1999, 19:972–978.

    PubMed  CAS  Google Scholar 

  12. Schmidt AM, Yan SD, Wautier JL, Stern D: Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 1999, 84:489–497.

    PubMed  CAS  Google Scholar 

  13. Jialal I, Devaraj S: Inflammation and atherosclerosis: the value of the high-sensitivity C-reactive protein assay as a risk marker. Am J Clin Pathol 2001, 116(suppl):S108-S115.

    PubMed  Google Scholar 

  14. Rifai N, Tracy RP, Ridker PM: Clinical efficacy of an automated high-sensitivity C-reactive protein assay. Clin Chem 1999, 45:2136–2141.

    PubMed  CAS  Google Scholar 

  15. Burke AP, Tracy RP, Kolodgie F, et al.: Elevated C-reactive protein values and atherosclerosis in sudden coronary death: association with different pathologies. Circulation 2002, 105:2019–2023.

    Article  PubMed  CAS  Google Scholar 

  16. Venugopal SK, Devaraj S, Yuhanna I, et al.: Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation 2002, 106:1439–1441.

    Article  PubMed  CAS  Google Scholar 

  17. Ridker PM, Cushman M, Stampfer MJ, et al.: Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 1997, 336:973–979.

    Article  PubMed  CAS  Google Scholar 

  18. Ridker PM, Buring JE, Shih J, et al.: Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation 1998, 98:731–733.

    PubMed  CAS  Google Scholar 

  19. Rifai N, Buring JE, Lee IM, et al.: Is C-reactive protein specific for vascular disease in women? Ann Intern Med 2002, 136:529–533.

    PubMed  CAS  Google Scholar 

  20. Rohde LE, Hennekens CH, Ridker PM: Survey of C-reactive protein and cardiovascular risk factors in apparently healthy men. Am J Cardiol 1999, 84:1018–1022.

    Article  PubMed  CAS  Google Scholar 

  21. Tracy RP, Lemaitre RN, Psaty BM, et al.: Relationship of C-reactive protein to risk of cardiovascular disease in the elderly. Results from the Cardiovascular Health Study and the Rural Health Promotion Project. Arterioscler Thromb Vasc Biol 1997, 17:1121–1127.

    PubMed  CAS  Google Scholar 

  22. Kuller LH, Tracy RP, Shaten J, Meilahn EN: Relation of C-reactive protein and coronary heart disease in the MRFIT nested case-control study. Multiple Risk Factor Intervention Trial. Am J Epidemiol 1996, 144:537–547.

    PubMed  CAS  Google Scholar 

  23. Frohlich M, Imhof A, Berg G, et al.: Association between C-reactive protein and features of the metabolic syndrome: a population-based study. Diabetes Care 2000, 23:1835–1839.

    Article  PubMed  CAS  Google Scholar 

  24. Koenig W, Sund M, Frohlich M, et al.: C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, dy1984 to 1992. Circulation 1999, 99:237–242.

    PubMed  CAS  Google Scholar 

  25. Libby P, Ridker PM, Maseri A: Inflammation and atherosclerosis. Circulation 2002, 105:1135–1143. A good review of atherosclerosis, inflammation, and the role of hs-CRP.

    Article  PubMed  CAS  Google Scholar 

  26. Ridker PM, Rifai N, Rose L, et al.: Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002, 347:1557–1565. Reports on the data from 8 years of follow-up of the Women's Health Study cohort. It suggests that hs-CRP is a stronger predictor for cardiovascular events than LDL cholesterol and that the two are independent of one another. We recommend the accompanying editorial from the same journal issue that puts the available evidence into perspective.

    Article  PubMed  CAS  Google Scholar 

  27. Pickup JC, Mattock MB, Chusney GD, Burt D: NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome. X Diabetologia 1997, 40:1286–1292.

    Article  CAS  Google Scholar 

  28. Pradhan AD, Manson JE, Rifai N, et al.: C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001, 286:327–334. Prospective, nested, case-control study from the Women's Health Study cohort. Results suggest that elevated hs-CRP and IL-6 predict the development of type 2 diabetes mellitus and support a role for inflammation in the pathogenesis of diabetes.

    Article  PubMed  CAS  Google Scholar 

  29. Freeman DJ, Norrie J, Caslake MJ, et al.: C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes 2002, 51:1596–1600.

    Article  PubMed  CAS  Google Scholar 

  30. Barzilay JI, Spiekerman CF, Kuller LH, et al.: Prevalence of clinical and isolated subclinical cardiovascular disease in older adults with glucose disorders: the Cardiovascular Health Study. Diabetes Care 2001, 24:1233–1239.

    Article  PubMed  CAS  Google Scholar 

  31. Festa A, D'Agostino RJ, Howard G, et al.: Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000, 102:42–47. Festa et al. suggest that chronic subclinical inflammation is part of the insulin resistance syndrome and that hs-CRP is independently related to insulin sensitivity, body fat ie, body mass index and waist circumference), fasting insulin, and proinsulin. These associations were consistent across ethnic groups. There was a linear increase in hs-CRP with an increase in the number of metabolic disorders.

    PubMed  CAS  Google Scholar 

  32. Visser M, Bouter LM, McQuillan GM, et al.: Elevated C-reactive protein levels in overweight and obese adults. JAMA 1999, 282:2131–2135.

    Article  PubMed  CAS  Google Scholar 

  33. Liu S, Manson JE, Buring JE, et al.: Relation between a diet with a high glycemic load and plasma concentrations of high-sensitivity C-reactive protein in middle-aged women. Am J Clin Nutr 2002, 75:492–498.

    PubMed  CAS  Google Scholar 

  34. Tchernof A, Nolan A, Sites CK, et al.: Weight loss reduces C-reactive protein levels in obese postmenopausal women. Circulation 2002, 105:564–569.

    Article  PubMed  Google Scholar 

  35. Ridker PM, Shih J, Cook TJ, et al.: Plasma homocysteine concentration, statin therapy, and the risk of first acute coronary events. Circulation 2002, 105:1776–1779.

    Article  PubMed  CAS  Google Scholar 

  36. Dandona P, Aljada A, Mohanty P: The anti-inflammatory and potential anti-atherogenic effect of insulin: a new paradigm. Diabetologia 2002, 45:924–930.

    Article  PubMed  CAS  Google Scholar 

  37. Baldwin AS Jr: The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996, 14:649–683.

    Article  PubMed  CAS  Google Scholar 

  38. Fath-Ordoubadi F, Beatt KJ: Glucose-insulin-potassium therapy for treatment of acute myocardial infarction: an overview of randomized placebo-controlled trials. Circulation 1997, 96:1152–1156.

    PubMed  CAS  Google Scholar 

  39. Malmberg K: Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group. BMJ 1997, 314:1512–1515.

    PubMed  CAS  Google Scholar 

  40. Haffner SM, Greenberg AS, Weston WM, et al.: Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002, 106:679–684.

    Article  PubMed  CAS  Google Scholar 

  41. Chu NV, Kong AP, Kim DD, et al.: Differential effects of metformin and troglitazone on cardiovascular risk factors in patients with type 2 diabetes. Diabetes Care 2002, 25:542–549.

    Article  PubMed  CAS  Google Scholar 

  42. Festa A, D'Agostino R Jr, Tracy RP, Haffner SM: Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 2002, 51:1131–1137.

    Article  PubMed  CAS  Google Scholar 

  43. Gurlek A, Bayraktar M, Kirazli S: Increased plasminogen activator inhibitor-1 activity in offspring of type 2 diabetic patients: lack of association with plasma insulin levels. Diabetes Care 2000, 23:88–92.

    Article  PubMed  CAS  Google Scholar 

  44. Nagi DK, Yudkin JS: Effects of metformin on insulin resistance, risk factors for cardiovascular disease, and plasminogen activator inhibitor in NIDDM subjects. A study of two ethnic groups. Diabetes Care 1993, 16:621–629.

    Article  PubMed  CAS  Google Scholar 

  45. Aljada A, Garg R, Ghanim H, et al.: Nuclear factor-kappaB suppressive and inhibitor-kappaB stimulatory effects of troglitazone in obese patients with type 2 diabetes: evidence of an anti-inflammatory action? J Clin Endocrinol Metab 2001, 86:3250–3256.

    Article  PubMed  CAS  Google Scholar 

  46. Munshi MN, Stone A, Fink L, Fonseca V: Hyperhomocysteinemia following a methionine load in patients with non-insulin-dependent diabetes mellitus and macrovascular disease. Metabolism 1996, 45:133–135.

    Article  PubMed  CAS  Google Scholar 

  47. Fonseca V, Guba SC, Fink LM: Hyperhomocysteinemia and the endocrine system: implications for atherosclerosis and thrombosis. Endocr Rev 1999, 20:738–759.

    Article  PubMed  CAS  Google Scholar 

  48. Kark JD, Selhub J, Bostom A, et al.: Plasma homocysteine and all-cause mortality in diabetes [letter]. Lancet 1999, 353:1936–1937.

    Article  PubMed  CAS  Google Scholar 

  49. Hoogeveen EK, Kostense PJ, Jakobs C, et al.: Hyperhomocysteinemia increases risk of death, especially in type 2 diabetes: 5-year follow-up of theHoorn study. CircRes 2000, 101:1506–1511.

    CAS  Google Scholar 

  50. Schnyder G, Roffi M, Flammer Y, et al.: Effect of homocysteine-lowering therapy with folic acid, vitamin B(12), and vitamin B(6) on clinical outcome after percutaneous coronary intervention: the Swiss Heart study: a randomized controlled trial. JAMA 2002, 288:973–979.

    Article  PubMed  CAS  Google Scholar 

  51. Dicker-Brown A, Fonseca VA, Fink LM, Kern PA: The effect of glucose and insulin on the activity of methylene tetrahydrofolate reductase and cystathionine-beta-synthase: studies in hepatocytes. Atherosclerosis 2001, 158:297–301.

    Article  PubMed  CAS  Google Scholar 

  52. Fonseca V, Keebler M, Dicker-Brown A, et al.: The effect of troglitazone on plasma homocysteine, hepatic and red blood cell S-adenosyl methionine, and S-adenosyl homocysteine and enzymes in homocysteine metabolism in Zucker rats. Metabolism 2002, 51:783–786.

    Article  PubMed  CAS  Google Scholar 

  53. Meigs JB, Jacques PF, Selhub J, et al.: Fasting plasma homocysteine levels in the insulin resistance syndrome: the Framingham offspring study. Diabetes Care 2001, 24:1403–1410.

    Article  PubMed  CAS  Google Scholar 

  54. Fonseca VA, Mudaliar S, Schmidt B, et al.: Plasma homocysteine concentrations are regulated by acute hyperinsulinemia in nondiabetic but not type 2 diabetic subjects. Metabolism 1998, 47:686–689.

    Article  PubMed  CAS  Google Scholar 

  55. Franken DG, Boers GH, Blom HJ, et al.: Treatment of mild hyperhomocysteinemia in vascular disease patients. Circ Res 1994, 14:465–470.

    CAS  Google Scholar 

  56. Malinow MR, Duell PB, Hess DL, et al.: Reduction of plasma homocyst(e)ine levels by breakfast cereal fortified with folic acid in patients with coronary heart disease. N Engl J Med 1998, 338:1009–1015.

    Article  PubMed  CAS  Google Scholar 

  57. Desouza C, Keebler M, McNamara DB, Fonseca V: Drugs affecting homocysteine metabolism: impact on cardiovascular risk. Drugs 2002, 62:605–616.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theuma, P., Fonseca, V.A. Inflammation and emerging risk factors in diabetes mellitus and atherosclerosis. Curr Diab Rep 3, 248–254 (2003). https://doi.org/10.1007/s11892-003-0072-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-003-0072-3

Keywords

Navigation