Skip to main content

Advertisement

Log in

Alternate energy sources for catheter ablation

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Because of the limitations of conventional radiofrequency ablation in creating large or linear lesions, alternative energy sources have been used as possible methods of catheter ablation. Modified radiofrequency energy, cryoablation, and microwave, laser, and ultrasound technologies may be able to create longer, deeper, and more controlled lesions and may be particularly suited for the treatment of ventricular tachycardias and for linear atrial ablation. Future studies will establish the efficacy of these new and promising technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Calkins H, Prystowsky E, Carlson M, et al.: Temperature monitoring during radiofrequency catheter ablation procedures using closed loop control. Circulation 1994, 90:1279–1286.

    PubMed  CAS  Google Scholar 

  2. Langberg JJ, Gallagher M, Strickberger SA, et al.: Temperatureguided radiofrequency catheter ablation with very large distal electrodes. Circulation 1993, 88:245–249.

    PubMed  CAS  Google Scholar 

  3. Langberg JJ, Lee MA, Chin MC, et al.: Radiofrequency catheter ablation: the effect of electrode size on lesion volume in vivo. Pacing Clin Electrophysiol 1990, 13:1242–1248.

    Article  PubMed  CAS  Google Scholar 

  4. Satake S, Ohira H, Okishige K, et al.: Temperature-guided radiofrequency ablation using a new catheter electrode of 12 F gold tip [abstract]. Circulation 1993, 88:162.

    Google Scholar 

  5. Simmons WN, Mackey SC, He DS, et al.: Comparison of maximum myocardial lesion depth using radio-frequency energy delivered with a gold or platinum electrode [abstract]. Circulation 1994, 90(4 Pt 2):1270.

    Google Scholar 

  6. Bergau D, Brucker GG, Saul JP: Porous metal tipped catheter produces larger radiofrequency lesions through tip cooling [abstract]. Circulation 1993, 88:I164.

    Google Scholar 

  7. Wang PJ, Groeneveld PW, Gadhoke A, et al.: Electrode panels: a new design for radiofrequency ablation catheters [abstract]. J Am Coll Cardiol 1993, 21:265A.

    Google Scholar 

  8. Groeneveld PW, Haugh C, Estes NAM, et al.: Panel electrode “pigtail” catheter using flexible electrically conductive material: a new design for increasing radiofrequency ablation lesion size [abstract]. Pacing Clin Electrophysiol 1993, 16:923.

    Google Scholar 

  9. • Skrumeda LL, Mehra R: Comparison of standard and irrigated radiofrequency ablation in the canine ventricle. J Cardiovasc Electrophysiol 1998, 9:1196–1205.

    Article  PubMed  CAS  Google Scholar 

This extensive experimental study examined the effect of power and duration during standard and irrigated ablation. The largest lesions without craters or coagulum on pathologic examination were observed with irrigated ablation at 20 watts over 5 minutes

  1. • Petersen HH, Chen X, Pietersen A, et al.: Temperaturecontrolled irrigated tip radiofrequency catheter ablation: comparison of in vivo and in vitro lesion dimensions for standard catheter and irrigated tip catheter with minimal infusion rate. J Cardiovasc Electrophysiol 1998, 8:409–414.

    Article  Google Scholar 

This experimental study examined the use of a low infusion rate (1 mL/min) during irrigated ablation. Use of a target temperature of 60° C during irrigation resulted in larger lesions without coagulum formation compared with standard ablation. The numbers in each group were small, however, and crater formation was still observed.

  1. Mittleman RS, Huang SKS, DeGuzman WT, et al.: Use of the saline infusion electrode catheter for improved energy delivery and increased lesion size in radiofrequency catheter ablation. Pacing Clin Electrophysiol 1995, 18(5 Pt 1):1022–1027.

    Article  PubMed  CAS  Google Scholar 

  2. Nakagawa H, Yamanashi WS, Pitha JV, et al.: Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation 1995, 91:2264–2273.

    PubMed  CAS  Google Scholar 

  3. Calkins H, Wharton JM, Epstein AE, et al.: Safety and efficacy of catheter ablation of ventricular tachycardia using the cooled ablation system: final report. Pacing Clin Electrophysiol 1998, 12:842.

    Google Scholar 

  4. Wang ZH, Johnson CT, Cooke PA, et al.: Comparison of 8-mm tip and irrigated tip catheters for radiofrequency ablation of ventricular myocardium. J Am Coll Cardiol 1999, 33:140A.

    Google Scholar 

  5. Dorwath U, Fiek M, Remp T, et al.: Radiofrequency catheter ablation using cooled electrodes: comparison of different technologies. Circulation 1998, 98:I436.

    Google Scholar 

  6. Ruffy R, Imran MA, Santel DJ, et al.: Radiofrequency delivery through a cooled catheter tip allows the creation of larger endomyocardial lesions in the ovine heart. J Cardiovasc Electrophysiol 1995, 12:1089–1096.

    Article  Google Scholar 

  7. Dubuc M, Friedman PL, Roy D, et al.: Reversible electrophysiologic effects using ice mapping with a cryoablation catheter. Pacing Clin Electrophysiol 1997, 20:1203.

    Google Scholar 

  8. Okishige K, Stanhope W, Couper G, et al.: Feasibility of catheter cryoablation of epicardial ventricular tachycardia [abstract]. Pacing Clin Electrophysiol 1993, 16(4 Pt 2):923.

    Google Scholar 

  9. Gessman LJ, Agarwal JB, Endo T, et al.: Localization and mechanism of ventricular tachycardia by ice mapping 1 week after the onset of myocardial infarction in dogs. Circulation 1983, 68:657–666.

    PubMed  CAS  Google Scholar 

  10. Harrison L, Gallagher JJ, Kasell J, et al.: Cryosurgical ablation of the AV node. Circulation 1977, 55:463–470.

    PubMed  CAS  Google Scholar 

  11. Gallagher LA, Selay WC, Anderson W, et al.: Cryo-surgical ablation of accessory atrioventricular connections: a method for correction of the pre-excitation syndrome. Circulation 1977, 55:471–478.

    PubMed  CAS  Google Scholar 

  12. • Rodriguez L, Leunissen J, Hoekstra A, et al.: Transvenous cold mapping and cryoablation of the AV node in dogs: observations of chronic lesions and comparison to those obtained using radiofrequency ablation. J Cardiovasc Electrophysiol 1998, 9:1055–1061.

    Article  PubMed  CAS  Google Scholar 

This report demonstrates the abilities of transvenous cryoablation using a steerable catheter. On histologic examination, cryoablation lesions were more homogenous than radiofrequency lesions. This study also demonstrates the feasibility of reversible cold mapping using a transvenous catheter

  1. Caceres J, Werner P, Jazayeri M, et al.: Efficacy of cryosurgery alone for refractory monomorphic sustained ventricular tachycardia due to inferior wall infarction. J Am Coll Cardiol 1988, 11:1254.

    Article  PubMed  CAS  Google Scholar 

  2. Gillette PC, Swindle MM, Thompson RP, Case CL: Transvenous cryoablation of the bundle of His. Pacing Clin Electrophysiol 1991, 14:504–510.

    Article  PubMed  CAS  Google Scholar 

  3. Fujino H, Thompson RP, Germroth PG, et al.: Histologic study of chronic catheter cryoablation of the atrioventricular conduction in swine. Am Heart J 1993, 125:1632–1637.

    Article  PubMed  CAS  Google Scholar 

  4. Wang PJ, Aronovitz M, Schoen FJ, et al.: Catheter cryoablation under the mitral annulus: a new method of accessory pathway ablation [abstract]. J Am Coll Cardiol 1993, 21(2):357A.

    Google Scholar 

  5. Thibault B, Villemaire C, Talajic M, et al.: Catheter cryoablation is a more effective and potentially safer method to create atrial conduction block: comparison with radiofrequency ablation. Pacing Clin Electrophysiol 1998, 21:944.

    Google Scholar 

  6. Saksena S: Catheter ablation of tachycardia with laser energy: issues and answers. Pacing Clin Electrophysiol 1989, 12:196–203.

    Article  PubMed  CAS  Google Scholar 

  7. Svenson RH, Littmann L, Splinter R, et al.: Application of lasers for arrhythmia ablation. In Cardiac Electrophysiology: From Cell to Bedside. Edited by Zipes DP, Jalife J. Philadelphia: W.B. Saunders Co.; 1990.

    Google Scholar 

  8. Svenson RH, Hessel S, Selle JG, et al.: Nd:YAG laser photocoagulation of drug resistant ventricular tachycardia: results in 27 consecutive cases and operative factors influencing surgical outcome [speech]. Munich: International Society for Laser Surgery and Medicine; 1987.

    Google Scholar 

  9. Enders S, Weber HP, Heinze A, et al.: Laser and radiofrequency catheter ablation of ventricular myocardium in dogs: a comparative test [abstract]. Pacing Clin Electrophysiol 1994, 17(4 Pt 2):782.

    Google Scholar 

  10. Weber H, Enders S, Keiditisch E: Percutaneous Nd:YAG laser coagulation of ventricular myocardium in dogs using a special electrode laser catheter. Pacing Clin Electrophysiol 1989, 12:899–910.

    Article  PubMed  CAS  Google Scholar 

  11. Haines DE: Thermal ablation of perfused porcine left ventricle in vitro with the neodymium-YAG laser hot tip catheter system. Pacing Clin Electrophysiol 1992, 15:979–985.

    Article  PubMed  CAS  Google Scholar 

  12. Weber HP, Heinze A, Enders S, et al.: Catheter-directed laser coagulation of atrial myocardium in dogs. Eur Heart J 1994, 15:971–980.

    PubMed  CAS  Google Scholar 

  13. Pfeiffer D, Moosdorf R, Svenson RH, et al.: Epicardial neodymium:YAG laser photocoagulation of ventricular tachycardia without ventriculotomy in patients after myocardial infarction. Circulation 1996, 94:3221–3225.

    PubMed  CAS  Google Scholar 

  14. Zheng SM, Kloner RA, Whittaker P: Ablation and coagulation of myocardial tissue by means of a pulsed holmium: YAG laser. Am Heart J 1993, 126:1474–1477.

    Article  PubMed  CAS  Google Scholar 

  15. Curtis AB, Mansour M, Friedl SE, et al.: Modification of atrioventricular conduction using a combined laser-electrode catheter. Pacing Clin Electrophysiol 1994, 17(3 Pt 1):337–348.

    Article  PubMed  CAS  Google Scholar 

  16. Ohtake H, Misaki T, Watanade G, et al.: Myocardial coagulation by intraoperative Nd:YAG laser ablation and its dependence on blood perfusion. Pacing Clin Electrophysiol 1994, 17(10):1627–1631.

    Article  PubMed  CAS  Google Scholar 

  17. Narula OS, Bharati S, Chan MC, et al.: Microtransection of the His bundle with laser radiation through a pervenous catheter: correlation of histologic and electrophysiologic data. Am J Cardiol 1984, 54:186–192.

    Article  PubMed  CAS  Google Scholar 

  18. Narula OS, Boveja BK, Cohen DM, et al.: Laser catheterinduced atrioventricular nodal delays and atrioventricular block in dogs: acute and chronic observations. J Am Coll Cardiol 1985, 5:259–267.

    Article  PubMed  CAS  Google Scholar 

  19. Weber HP, Heinze A, Enders S, et al.: Mapping guided laser catheter ablation of the atrioventricular conduction in dogs. Pacing Clin Electrophysiol 1996, 19:176–187.

    Article  PubMed  CAS  Google Scholar 

  20. Schuger CD, McMath L, Abrams G, et al.: Long-term effects of percutaneous laser balloon ablation from the canine coronary sinus. Circulation 1992, 86:947–954.

    PubMed  CAS  Google Scholar 

  21. Obelienius V, Knepa A, Ambartzumian R, et al.: Transvenous ablation of the atrioventricular conduction system by laser irradiation under endoscopic control. Lasers Surg Med 1985, 5:469–474.

    Article  PubMed  CAS  Google Scholar 

  22. Saksena S, Gielchinsky I: Argon laser ablation of modification of the atrioventricular conduction system in refractory supraventricular tachycardia. Am J Cardiol 1990, 66:767–770.

    Article  PubMed  CAS  Google Scholar 

  23. Weber HP, Kaltenbrunner W, Heinze A, et al.: Laser catheter ablation for patients with atrioventricular nodal reentrant tachycardia [abstract]. Pacing Clin Electrophysiol 1994, 17(4 Pt 2):815.

    Article  Google Scholar 

  24. Weber HP, Heinze A: Laser catheter ablation of atrial flutter and of atrioventricular nodal reentrant tachycardia in a single session. Eur Heart J 1994, 15: 1147–1149.

    PubMed  CAS  Google Scholar 

  25. Weber HP, Heinze A, Enders S, et al.: Laser versus radiofrequency catheter ablation of ventricular myocardium in dogs: a comparative test. Cardiology 1997, 88:346–352.

    Article  PubMed  CAS  Google Scholar 

  26. Hirao K, Suzuki K, Yamamoto N, et al.: Transcatheter laser coagulation of canine atrial septum using a balloon-tipped endoscope: anatomically guided catheter ablation under direct vision. Pacing Clin Electrophysiol 1998, 21:849.

    Google Scholar 

  27. Stauffer PR, Suen SA, Satoh T, et al.: Comparative thermal dosimetry of interstitial microwave and radiofrequency-LCF hyperthermia. Int J Hyperthermia 1989, 5(3):307–318.

    Article  PubMed  CAS  Google Scholar 

  28. Wonnell TL, Stauffer PR, Langberg JJ: Evaluation of microwave and radiofrequency catheter ablation in a myocardiumequivalent phantom model. IEEE Trans Biomed Eng 1992, 39:1086–1095.

    Article  PubMed  CAS  Google Scholar 

  29. • Thomas S, Clout R, Deery C, et al.: Microwave ablation of myocardial tissue: the effect of element design, tissue coupling, blood flow, power, and duration of exposure on lesion size. J Cardiovasc Electrophysiol 1999, 10:72–78.

    Article  PubMed  CAS  Google Scholar 

This in vitro study examines the determinants of lesion size during microwave ablation using amonopolar and helical antennas. There is an important relationship to duration of lesion, with lesion size continuing to increase at 360 seconds

  1. Whayne JG, Nath S, Haines DE: Microwave catheter ablation of myocardium in vitro: assessment of the characteristics of tissue heating and injury. Circulation 1994, 89:2390–2395.

    PubMed  CAS  Google Scholar 

  2. Whayne JG, Nath S, Haines DE: The effect of antenna design and microwave frequency on tissue temperature profiles during microwave catheter ablation in vitro [abstract]. Circulation 1992, 86:I192.

    Google Scholar 

  3. Mazzola F, Huang SKS, Lin J, et al.: Determinants of lesion size using a 4-millimeter split-tip antenna electrode for microwave catheter ablation. Pacing Clin Electrophysiol 1994, 17(4 Pt 2):814.

    Google Scholar 

  4. Haugh C, Davidson E, Estes NAM, et al.: Pulsing microwave energy: a method to create more uniform temperature gradients. J Int Cardiac Electrophysiol 1997, 1:57–65.

    Article  CAS  Google Scholar 

  5. Wang PJ, Ahmad A, Lenihan T, et al.: Developing and testing a feedback control system for microwave ablation: in vitro and in vivo results [abstract]. Pacing Clin Electrophysiol 1994, 17(4 Pt 2):782.

    Google Scholar 

  6. Langberg JJ, Wonnell T, Chin MC, et al.: Catheter ablation of the atrioventricular junction using a helical microwave antenna: a novel means of coupling energy to the endocardium. Pacing Clin Electrophysiol 1991, 14:2105–2113.

    Article  PubMed  CAS  Google Scholar 

  7. Liem LB, Mean RH, Shenasa M, et al.: In vitro and in vivo results of transcatheter microwave ablation using forwardfiring tip antenna design. Pacing Clin Electrophysiol 1996, 19:2004–2006.

    Article  PubMed  CAS  Google Scholar 

  8. Yang X, Watanabe I, Kojima T, et al.: Microwave ablation of the atrioventricular junction in vivo and ventricular myocardium in vitro and in vivo. Jpn Heart J 1994, 34:175–191.

    Google Scholar 

  9. • Jumrussirikul P, Chen JT, Jenkins M, et al.: Prospective comparison of temperature guided microwave and radiofrequency catheter ablation in the swine heart. Pacing Clin Electrophysiol 1998, 21:1364–1374.

    Article  PubMed  CAS  Google Scholar 

Microwave ablation and radiofrequency ablation were compared in vivo. Overall, the radiofrequency ablation lesions were larger than the microwave lesions. Microwave lesions felt to be stable according to temperature profile had depth comparable to that of radiofrequency lesions.

  1. Ikeda T, Sugi K, Emjoji E, et al.: Relation between the size of lesions and arrhythmias produced by microwave catheter ablation with a special electrode device. Jpn Circ J 1994, 58:214–221.

    PubMed  CAS  Google Scholar 

  2. Wang PJ, Schoen FJ, Aronovitz M, et al.: Microwave catheter ablation under the mitral annulus: a new method of accessory pathway ablation [abstract]. Pacing Clin Electrophysiol 1993, 16(4 Pt 2):866.

    Article  Google Scholar 

  3. Rho TH, Ito M, Pride HP, et al.: Microwave ablation of canine atrial tachycardia induced by aconitine. Am Heart J 1995, 129(5):1021–1025.

    Article  PubMed  CAS  Google Scholar 

  4. Zimmer JE, Hynynen K, He DS, et al.: The feasibility of using ultrasound for cardiac ablation. IEEE Trans Biomed Eng 1995, 42(9):891–897.

    Article  PubMed  CAS  Google Scholar 

  5. He DS, Zimmer JE, Hynynen K, et al.: Preliminary results using ultrasound energy for ablation of the ventricular myocardium in dogs. Am J Cardiol 1994, 73(13):1029–1031.

    Article  PubMed  CAS  Google Scholar 

  6. • Ohkubo T, Okishige K, Goseki Y, et al.: Experimental study of catheter ablation using ultrasound energy in canine and porcine hearts. Jpn Heart J 1998, 39:399–409.

    PubMed  CAS  Google Scholar 

An important experimental study demonstrating the potential feasibility of ultrasound ablation both in vitro and in vivo. Data demonstrating the increase in lesion depth with duration continuing at 300 seconds in vitro were not available for in vivo studies

  1. Packer DL, Chan R, Johnson SB, et al.: Ultrasound cardioscopy: initial experience with a new high resolution combined intracardiac ultrasound/ablation system. Pacing Clin Electrophysiol 1994, 17(4 Pt 2):863.

    Google Scholar 

  2. Packer DL, Seward JB, Chan RC, et al.: The utility of a new integrated high resolution intracardiac ultrasound/ablation system in a canine model [abstract]. J Am Coll Cardiol 1995, 53A.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P.J., Homoud, M.K., Link, M.S. et al. Alternate energy sources for catheter ablation. Curr Cardiol Rep 1, 165–171 (1999). https://doi.org/10.1007/s11886-999-0076-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-999-0076-y

Keywords

Navigation