Skip to main content
Log in

Persistent or Recurrent Angina Following Percutaneous Coronary Revascularization

  • Ischemic Heart Disease (D Mukherjee, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Persistent or recurrent angina after percutaneous coronary intervention (PCI) has substantial patient morbidity and economic impact. As knowledge of the pathophysiology of this condition has evolved, new tools for accurate diagnosis and treatment have become available. We provide a current, comprehensive review of mechanisms of post-PCI angina, diagnostic strategies, and therapeutic options.

Recent Findings

The routine use of functional testing during PCI may enable more accurate revascularization. Coronary vasomotor disorders commonly cause angina after PCI in the absence of obstructive epicardial CAD. Invasive coronary vasoreactivity testing can enable phenotype-guided therapy of coronary vasomotor disorders with improvement in angina. Multiple nonpharmacologic modalities to treat refractory angina are under development.

Summary

A comprehensive approach to the diagnosis of persistent or recurrent angina after PCI with noninvasive and invasive techniques is required. An individualized, phenotype-guided management using lifestyle, pharmacologic, and nonpharmacologic modalities is necessary to optimize outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:

    • Of importance

    1. Kloner RA, Chaitman B. Angina and its management. J Cardiovasc Pharmacol Ther. 2017;22(3):199–209.

      Article  Google Scholar 

    2. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation. 2022;145(8):e153–639.

      Article  Google Scholar 

    3. Kempf J, Buysman E, Brixner D. Health resource utilization and direct costs associated with angina for patients with coronary artery disease in a US managed care setting. Am Health Drug Benefits. 2011;4(6):353–61.

      Google Scholar 

    4. Lawton JS, Tamis-Holland JE, Bangalore S, Bates ER, Beckie TM, Bischoff JM, et al. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(3):e4–17.

      Google Scholar 

    5. • Crea F, Bairey Merz CN, Beltrame JF, Berry C, Camici PG, Kaski JC, et al. Mechanisms and diagnostic evaluation of persistent or recurrent angina following percutaneous coronary revascularization. Eur Heart J. 2019;40(29):2455–62. Comprehensive Review of Persistent Angina After Revascularization.

    6. Jeremias A, Kutscher S, Haude M, Heinen D, Holtmann G, Senf W, et al. Nonischemic chest pain induced by coronary interventions: a prospective study comparing coronary angioplasty and stent implantation. Circulation. 1998;98(24):2656–8.

      Article  CAS  Google Scholar 

    7. Gulbenkian S, Saetrum Opgaard O, Ekman R, Costa Andrade N, Wharton J, Polak JM, et al. Peptidergic innervation of human epicardial coronary arteries. Circ Res. 1993;73(3):579–88.

      Article  CAS  Google Scholar 

    8. Kobayashi N, Mintz GS, Witzenbichler B, Metzger DC, Rinaldi MJ, Duffy PL, et al. Prevalence, features, and prognostic importance of edge dissection after drug-eluting stent implantation: an ADAPT-DES intravascular ultrasound substudy. Circ Cardiovasc Interv. 2016;9(7): e003553.

      Article  CAS  Google Scholar 

    9. Lee ZV, Hanif B. Historical perspectives on management of acute myocardial infarction. In: Watson TJ, Ong PJL, Tcheng JE, editors. Primary angioplasty: a practical guide. Singapore: Springer Copyright 2018, The Author(s). 2018. p. 1–13.

    10. Bhargava B, Waksman R, Lansky AJ, Kornowski R, Mehran R, Leon MB. Clinical outcomes of compromised side branch (stent jail) after coronary stenting with the NIR stent. Catheter Cardiovasc Interv. 2001;54(3):295–300.

      Article  CAS  Google Scholar 

    11. • Jeremias A, Davies JE, Maehara A, Matsumura M, Schneider J, Tang K, et al. Blinded physiological assessment of residual ischemia after successful angiographic percutaneous coronary intervention: the DEFINE PCI study. JACC Cardiovasc Interv. 2019;12(20):1991–2001. This study showed that angiographically successful PCI is still associated with ischemia in almost 25% of patients, with many lesions treatable by further PCI.

    12. Agarwal SK, Kasula S, Hacioglu Y, Ahmed Z, Uretsky BF, Hakeem A. Utilizing post-intervention fractional flow reserve to optimize acute results and the relationship to long-term outcomes. JACC Cardiovasc Interv. 2016;9(10):1022–31.

      Article  Google Scholar 

    13. Brown RA, Shantsila E, Varma C, Lip GY. Epidemiology and pathogenesis of diffuse obstructive coronary artery disease: the role of arterial stiffness, shear stress, monocyte subsets and circulating microparticles. Ann Med. 2016;48(6):444–55.

      Article  Google Scholar 

    14. Baranauskas A, Peace A, Kibarskis A, Shannon J, Abraitis V, Bajoras V, et al. FFR result post PCI is suboptimal in long diffuse coronary artery disease. EuroIntervention. 2016;12(12):1473–80.

      Article  Google Scholar 

    15. Ullrich H, Münzel T, Gori T. Coronary stent thrombosis- predictors and prevention. Dtsch Arztebl Int. 2020;117(18):320–6.

      Google Scholar 

    16. Polimeni A, Sorrentino S, Spaccarotella C, Mongiardo A, Sabatino J, De Rosa S, et al. Stent thrombosis after percutaneous coronary intervention: from bare-metal to the last generation of drug-eluting stents. Cardiol Clin. 2020;38(4):639–47.

      Article  Google Scholar 

    17. Williams PD, Judkins C, Rayoo R, Barlis P. Coronary stent thrombosis. Int J Cardiol. 2013;168(2):1587.

      Article  Google Scholar 

    18. Omeh DJ, Shlofmitz E. Restenosis. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

    19. Shakarami A. Incidence of restenosis following rapamycin or paclitaxeleluting stent in coronary stent implantation. Cardiovasc Hematol Disord Drug Targets. 2021;21(3):196–201.

      Article  CAS  Google Scholar 

    20. Moussa ID, Mohananey D, Saucedo J, Stone GW, Yeh RW, Kennedy KF, et al. Trends and outcomes of restenosis after coronary stent implantation in the United States. J Am Coll Cardiol. 2020;76(13):1521–31.

      Article  Google Scholar 

    21. Nakamura D, Dohi T, Ishihara T, Kikuchi A, Mori N, Yokoi K, et al. Predictors and outcomes of neoatherosclerosis in patients with in-stent restenosis. EuroIntervention. 2021;17(6):489–96.

      Article  Google Scholar 

    22. Tamez H, Secemsky EA, Valsdottir LR, Moussa ID, Song Y, Simonton CA, et al. Long-term outcomes of percutaneous coronary intervention for in-stent restenosis among Medicare beneficiaries. EuroIntervention. 2021;17(5):e380–7.

      Article  Google Scholar 

    23. Nguyen TH, Ong GJ, Girolamo OC, De Menezes CV, Muminovic A, Chirkov YY, et al. Angina due to coronary artery spasm (variant angina): diagnosis and intervention strategies. Expert Rev Cardiovasc Ther. 2021;19(10):917–27.

      Article  CAS  Google Scholar 

    24. Kondo T, Terada K. Coronary-artery vasospasm. N Engl J Med. 2017;376(25): e52.

      Article  Google Scholar 

    25. Contreras Zuniga E, Gomez Mesa JE, Zuluaga Martinez SX, Ocampo V, Andres UC. Prinzmetal’s angina. Arq Bras Cardiol. 2009;93(2):e30–2.

      Article  Google Scholar 

    26. Dahdouh Z, Mohamed T. Prinzmetal angina mimicking severe three-vessel coronary artery disease. J Invasive Cardiol. 2020;32(9):E240–1.

      Google Scholar 

    27. Lee MS, Chen CH. Myocardial bridging: an up-to-date review. J Invasive Cardiol. 2015;27(11):521–8.

      Google Scholar 

    28. Marinescu MA, Löffler AI, Ouellette M, Smith L, Kramer CM, Bourque JM. Coronary microvascular dysfunction, microvascular angina, and treatment strategies. JACC Cardiovasc Imaging. 2015;8(2):210–20.

      Article  Google Scholar 

    29. Lenfant C. Chest pain of cardiac and noncardiac origin. Metabolism. 2010;59(Suppl 1):S41–6.

      Article  CAS  Google Scholar 

    30. Fanaroff AC, Kaltenbach LA, Peterson ED, Hess CN, Cohen DJ, Fonarow GC, et al. Management of persistent angina after myocardial infarction treated with percutaneous coronary intervention: Insights from the TRANSLATE-ACS Study. J Am Heart Assoc. 2017;6(10).

    31. Sara JD, Taher R, Kolluri N, Vella A, Lerman LO, Lerman A. Coronary microvascular dysfunction is associated with poor glycemic control amongst female diabetics with chest pain and non-obstructive coronary artery disease. Cardiovasc Diabetol. 2019;18(1):22.

      Article  Google Scholar 

    32. Patel MR, Jeremias A, Maehara A, Matsumura M, Zhang Z, Schneider J, et al. 1-Year outcomes of blinded physiological assessment of residual ischemia after successful PCI: DEFINE PCI Trial. JACC Cardiovasc Interv. 2022;15(1):52–61.

      Article  Google Scholar 

    33. Badheka AO, Hendel RC. Radionuclide cardiac stress testing. Curr Opin Cardiol. 2011;26(5):370–8.

      Article  Google Scholar 

    34. Picano E, Pasanisi E, Venneri L, Agrusta M, Mottola G, Sicari R. Stress echocardiography. Curr Pharm Des. 2005;11(17):2137–49.

      Article  CAS  Google Scholar 

    35. Standbridge K, Reyes E. The role of pharmacological stress testing in women. J Nucl Cardiol. 2016;23(5):997–1007.

      Article  Google Scholar 

    36. Banerjee A, Newman DR, Van den Bruel A, Heneghan C. Diagnostic accuracy of exercise stress testing for coronary artery disease: a systematic review and meta-analysis of prospective studies. Int J Clin Pract. 2012;66(5):477–92.

      Article  CAS  Google Scholar 

    37. Argulian E, Po JRF, Uretsky S, Kommaraju KK, Patel S, Agarwal V, et al. Comparison of the current reasons for undergoing pharmacologic stress during echocardiographic and radionuclide stress testing. J Nucl Cardiol. 2017;24(2):546–54.

      Article  Google Scholar 

    38. Dori G, Denekamp Y, Fishman S, Bitterman H. Exercise stress testing, myocardial perfusion imaging and stress echocardiography for detecting restenosis after successful percutaneous transluminal coronary angioplasty: a review of performance. J Intern Med. 2003;253(3):253–62.

      Article  CAS  Google Scholar 

    39. Achenbach S, Raggi P. Imaging of coronary atherosclerosis by computed tomography. Eur Heart J. 2010;31(12):1442–8.

      Article  Google Scholar 

    40. Karnib S, Chinnaiyan KM. Coronary computed tomography angiography: enhancing risk stratification and diagnosis of cardiovascular disease in women. Curr Treat Options Cardiovasc Med. 2019;21(10):62.

      Article  Google Scholar 

    41. Saraste A, Kajander S, Han C, Nesterov SV, Knuuti J. PET: Is myocardial flow quantification a clinical reality? J Nucl Cardiol. 2012;19(5):1044–59.

      Article  Google Scholar 

    42. Danad I, Uusitalo V, Kero T, Saraste A, Raijmakers PG, Lammertsma AA, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: Cutoff values and diagnostic accuracy of quantitative [(15)O]H2O PET imaging. J Am Coll Cardiol. 2014;64(14):1464–75.

      Article  Google Scholar 

    43. Hidalgo A, Pons-Lladó G. Usefulness of cardiac MRI in the prognosis and follow-up of ischemic heart disease. Radiologia. 2015;57(3):201–12.

      Article  CAS  Google Scholar 

    44. Collet C, Grundeken MJ, Asano T, Onuma Y, Wijns W, Serruys PW. State of the art: Coronary angiography. EuroIntervention. 2017;13(6):634–43.

      Article  Google Scholar 

    45. Li BH, Leung AS, Soong A, Munding CE, Lee H, Thind AS, et al. Hybrid intravascular ultrasound and optical coherence tomography catheter for imaging of coronary atherosclerosis. Catheter Cardiovasc Interv. 2013;81(3):494–507.

      Article  Google Scholar 

    46. Sharma SK, Vengrenyuk Y, Kini AS. IVUS, OCT, and coronary artery calcification: is there a bone of contention? JACC Cardiovasc Imaging. 2017;10(8):880–2.

      Article  Google Scholar 

    47. McKay CR, Shavelle DM. Intravascular ultrasound in the coronary arteries. Semin Vasc Surg. 2006;19(3):132–8.

      Article  Google Scholar 

    48. Kubo T, Akasaka T, Shite J, Suzuki T, Uemura S, Yu B, et al. OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study. JACC Cardiovasc Imaging. 2013;6(10):1095–104.

      Article  Google Scholar 

    49. Lynch DR Jr, Fearon WF. Landmark fractional flow reserve trials. Interv Cardiol Clin. 2015;4(4):435–41.

      Google Scholar 

    50. Picard F, Sayah N, Spagnoli V, Adjedj J, Varenne O. Vasospastic angina: a literature review of current evidence. Arch Cardiovasc Dis. 2019;112(1):44–55.

      Article  Google Scholar 

    51. Mukherjee D. Optimal treatment for in-stent restenosis after BMS–DES, coated balloon, or scalpel? Eur Heart J. 2008;29(13):1595–6.

      Article  Google Scholar 

    52. Looser PM, Kim LK, Feldman DN. In-stent restenosis: pathophysiology and treatment. Curr Treat Options Cardiovasc Med. 2016;18(2):10.

      Article  Google Scholar 

    53. Rhee TM, Lee JM, Shin ES, Hwang D, Park J, Jeon KH, et al. Impact of optimized procedure-related factors in drug-eluting balloon angioplasty for treatment of in-stent restenosis. JACC Cardiovasc Interv. 2018;11(10):969–78.

      Article  Google Scholar 

    54. Brott BC, Chatterjee A. Drug-eluting balloon therapy for in-stent restenosis of drug-eluting stents: Choose and prepare the appropriate lesion. JACC Cardiovasc Interv. 2018;11(10):979–80.

      Article  Google Scholar 

    55. Bertero E, Heusch G, Münzel T, Maack C. A pathophysiological compass to personalize antianginal drug treatment. Nat Rev Cardiol. 2021;18(12):838–52.

      Article  Google Scholar 

    56. • Maeremans J, Walsh S, Knaapen P, Spratt JC, Avran A, Hanratty CG, et al. The hybrid algorithm for treating chronic total occlusions in Europe: the RECHARGE registry. J Am Coll Cardiol. 2016;68(18):1958–70. Contemporary expert CTO PCI is associated with good outcomes and low risk.

    57. Werner GS, Martin-Yuste V, Hildick-Smith D, Boudou N, Sianos G, Gelev V, et al. A randomized multicentre trial to compare revascularization with optimal medical therapy for the treatment of chronic total coronary occlusions. Eur Heart J. 2018;39(26):2484–93.

      Article  CAS  Google Scholar 

    58. Zhu Y, Meng S, Chen M, Liu K, Jia R, Li H, et al. Long-term prognosis of chronic total occlusion treated by successful percutaneous coronary intervention in patients with or without diabetes mellitus: a systematic review and meta-analysis. Cardiovasc Diabetol. 2021;20(1):29.

      Article  Google Scholar 

    59. Matta A, Bouisset F, Lhermusier T, Campelo-Parada F, Elbaz M, Carrié D, et al. Coronary artery spasm: New insights. J Interv Cardiol. 2020;2020:5894586.

      Article  Google Scholar 

    60. Boyd JH, Pargaonkar VS, Scoville DH, Rogers IS, Kimura T, Tanaka S, et al. Surgical unroofing of hemodynamically significant left anterior descending myocardial bridges. Ann Thorac Surg. 2017;103(5):1443–50.

      Article  Google Scholar 

    61. Yuan SM. Myocardial bridging. Braz J Cardiovasc Surg. 2016;31(1):60–2.

      Google Scholar 

    62. Melikian N, Vercauteren S, Fearon WF, Cuisset T, MacCarthy PA, Davidavicius G, et al. Quantitative assessment of coronary microvascular function in patients with and without epicardial atherosclerosis. EuroIntervention. 2010;5(8):939–45.

      Article  Google Scholar 

    63. Li Y, Yang D, Lu L, Wu D, Yao J, Hu X, et al. Thermodilutional confirmation of coronary microvascular dysfunction in patients with recurrent angina after successful percutaneous coronary intervention. Can J Cardiol. 2015;31(8):989–97.

      Article  Google Scholar 

    64. Hokimoto S, Tabata N, Yamanaga K, Sueta D, Akasaka T, Tsujita K, et al. Prevalence of coronary macro- and micro-vascular dysfunctions after drug-eluting stent implantation without in-stent restenosis. Int J Cardiol. 2016;222:185–94.

      Article  Google Scholar 

    65. Ong P, Athanasiadis A, Perne A, Mahrholdt H, Schaufele T, Hill S, et al. Coronary vasomotor abnormalities in patients with stable angina after successful stent implantation but without in-stent restenosis. Clin Res Cardiol. 2014;103(1):11–9.

      Article  Google Scholar 

    66. Abbate A, Biondi-Zoccai GG, Agostoni P, Lipinski MJ, Vetrovec GW. Recurrent angina after coronary revascularization: a clinical challenge. Eur Heart J. 2007;28(9):1057–65.

      Article  Google Scholar 

    67. Hokimoto S, Mizuno Y, Sueta D, Morita S, Akasaka T, Tabata N, et al. High incidence of coronary spasm after percutaneous coronary interventions: Comparison between new generation drug-eluting stent and bare-metal stent. Int J Cardiol. 2015;182:171–3.

      Article  Google Scholar 

    68. Cassar A, Chareonthaitawee P, Rihal CS, Prasad A, Lennon RJ, Lerman LO, et al. Lack of correlation between noninvasive stress tests and invasive coronary vasomotor dysfunction in patients with nonobstructive coronary artery disease. Circ Cardiovasc Interv. 2009;2(3):237–44.

      Article  Google Scholar 

    69. Wohlgelernter D, Cleman M, Highman HA, Fetterman RC, Duncan JS, Zaret BL, et al. Regional myocardial dysfunction during coronary angioplasty: Evaluation by two-dimensional echocardiography and 12 lead electrocardiography. J Am Coll Cardiol. 1986;7(6):1245–54.

      Article  CAS  Google Scholar 

    70. Al-Mohaissen MA. Echocardiographic assessment of primary microvascular angina and primary coronary microvascular dysfunction. Trends Cardiovasc Med. 2022.

    71. Pelletier-Galarneau M, Dilsizian V. Microvascular angina diagnosed by absolute PET Myocardial blood flow quantification. Curr Cardiol Rep. 2020;22(2):9.

      Article  Google Scholar 

    72. Liu A, Wijesurendra RS, Liu JM, Forfar JC, Channon KM, Jerosch-Herold M, et al. Diagnosis of microvascular angina using cardiac magnetic resonance. J Am Coll Cardiol. 2018;71(9):969–79.

      Article  CAS  Google Scholar 

    73. Norgaard BL, Fairbairn TA, Safian RD, Rabbat MG, Ko B, Jensen JM, et al. Coronary CT angiography-derived fractional flow reserve testing in patients with stable coronary artery disease: recommendations on interpretation and reporting. Radiol Cardiothorac Imaging. 2019;1(5): e190050.

      Article  Google Scholar 

    74. Ford TJ, Ong P, Sechtem U, Beltrame J, Camici PG, Crea F, et al. Assessment of vascular dysfunction in patients without obstructive coronary artery disease: Why, how, and when. JACC Cardiovasc Interv. 2020;13(16):1847–64.

      Article  Google Scholar 

    75. • Ong P, Camici PG, Beltrame JF, Crea F, Shimokawa H, Sechtem U, et al. International standardization of diagnostic criteria for microvascular angina. Int J Cardiol. 2018;250:16–20. First international standardization for microvascular angina diagnosis.

    76. • Ford TJ, Stanley B, Good R, Rocchiccioli P, McEntegart M, Watkins S, et al. Stratified medical therapy using invasive coronary function testing in angina: the CorMicA trial. J Am Coll Cardiol. 2018;72(23 Pt A):2841–55. This study showed that phenotype-guided management based on invasive coronary function testing is associated with improved outcomes.

    77. Ford TJ, Stanley B, Sidik N, Good R, Rocchiccioli P, McEntegart M, et al. 1-Year outcomes of angina management guided by invasive coronary function testing (CorMicA). JACC Cardiovasc Interv. 2020;13(1):33–45.

      Article  Google Scholar 

    78. Povsic TJ, Henry TD, Traverse JH, Fortuin FD, Schaer GL, Kereiakes DJ, et al. The RENEW trial: Efficacy and safety of intramyocardial autologous CD34(+) cell administration in patients with refractory angina. JACC Cardiovasc Interv. 2016;9(15):1576–85.

      Article  Google Scholar 

    79. Arora RR, Chou TM, Jain D, Fleishman B, Crawford L, McKiernan T, et al. The multicenter study of enhanced external counterpulsation (MUST-EECP): Effect of EECP on exercise-induced myocardial ischemia and anginal episodes. J Am Coll Cardiol. 1999;33(7):1833–40.

      Article  CAS  Google Scholar 

    80. Asbury EA, Webb CM, Probert H, Wright C, Barbir M, Fox K, et al. Cardiac rehabilitation to improve physical functioning in refractory angina: a pilot study. Cardiology. 2012;122(3):170–7.

      Article  Google Scholar 

    81. Verheye S, Jolicoeur EM, Behan MW, Pettersson T, Sainsbury P, Hill J, et al. Efficacy of a device to narrow the coronary sinus in refractory angina. N Engl J Med. 2015;372(6):519–27.

      Article  CAS  Google Scholar 

    82. Giannini F, Baldetti L, Konigstein M, Rosseel L, Ruparelia N, Gallone G, et al. Safety and efficacy of the reducer: a multi-center clinical registry - REDUCE study. Int J Cardiol. 2018;269:40–4.

      Article  Google Scholar 

    83. Burneikaite G, Shkolnik E, Celutkiene J, Zuoziene G, Butkuviene I, Petrauskiene B, et al. Cardiac shock-wave therapy in the treatment of coronary artery disease: Systematic review and meta-analysis. Cardiovasc Ultrasound. 2017;15(1):11.

      Article  Google Scholar 

    84. Leon MB, Kornowski R, Downey WE, Weisz G, Baim DS, Bonow RO, et al. A blinded, randomized, placebo-controlled trial of percutaneous laser myocardial revascularization to improve angina symptoms in patients with severe coronary disease. J Am Coll Cardiol. 2005;46(10):1812–9.

      Article  Google Scholar 

    85. Briones E, Lacalle JR, Marin I. Transmyocardial laser revascularization versus medical therapy for refractory angina. Cochrane Database Syst Rev. 2009(1):CD003712.

    86. Gallone G, Baldetti L, Tzanis G, Gramegna M, Latib A, Colombo A, et al. Refractory angina: from pathophysiology to new therapeutic nonpharmacological technologies. JACC Cardiovasc Interv. 2020;13(1):1–19.

      Article  Google Scholar 

    87. Hartikainen J, Hassinen I, Hedman A, Kivela A, Saraste A, Knuuti J, et al. Adenoviral intramyocardial VEGF-DDeltaNDeltaC gene transfer increases myocardial perfusion reserve in refractory angina patients: a phase I/IIa study with 1-year follow-up. Eur Heart J. 2017;38(33):2547–55.

      Article  CAS  Google Scholar 

    88. Velagapudi P, Turagam M, Kolte D, Khera S, Hyder O, Gordon P, et al. Intramyocardial autologous CD34+ cell therapy for refractory angina: a meta-analysis of randomized controlled trials. Cardiovasc Revasc Med. 2019;20(3):215–9.

      Article  Google Scholar 

    89. Bassetti B, Carbucicchio C, Catto V, Gambini E, Rurali E, Bestetti A, et al. Linking cell function with perfusion: Insights from the transcatheter delivery of bone marrow-derived CD133(+) cells in ischemic refractory cardiomyopathy trial (RECARDIO). Stem Cell Res Ther. 2018;9(1):235.

      Article  CAS  Google Scholar 

    90. Imran TF, Malapero R, Qavi AH, Hasan Z, de la Torre B, Patel YR, et al. Efficacy of spinal cord stimulation as an adjunct therapy for chronic refractory angina pectoris. Int J Cardiol. 2017;227:535–42.

      Article  Google Scholar 

    91. Denby C, Groves DG, Eleuteri A, Tsang HK, Leach A, Hammond C, et al. Temporary sympathectomy in chronic refractory angina: a randomised, double-blind, placebo-controlled trial. Br J Pain. 2015;9(3):142–8.

      Article  Google Scholar 

    92. Zhao L, Li D, Zheng H, Chang X, Cui J, Wang R, et al. Acupuncture as adjunctive therapy for chronic stable angina: a randomized clinical trial. JAMA Intern Med. 2019;179(10):1388–97.

      Article  Google Scholar 

    93. Secemsky EA, Matteau A, Yeh RW, Steg PG, Camenzind E, Wijns W, et al. Comparison of short- and long-term cardiac mortality in early versus late stent thrombosis (from pooled PROTECT trials). Am J Cardiol. 2015;115(12):1678–84.

      Article  Google Scholar 

    94. Cassese S, Byrne RA, Schulz S, Hoppman P, Kreutzer J, Feuchtenberger A, et al. Prognostic role of restenosis in 10 004 patients undergoing routine control angiography after coronary stenting. Eur Heart J. 2015;36(2):94–9.

      Article  Google Scholar 

    95. Johnson BD, Shaw LJ, Pepine CJ, Reis SE, Kelsey SF, Sopko G, et al. Persistent chest pain predicts cardiovascular events in women without obstructive coronary artery disease: results from the NIH-NHLBI-sponsored Women’s Ischaemia Syndrome Evaluation (WISE) study. Eur Heart J. 2006;27(12):1408–15.

      Article  Google Scholar 

    96. Shimokawa H, Suda A, Takahashi J, Berry C, Camici PG, Crea F, et al. Clinical characteristics and prognosis of patients with microvascular angina: an international and prospective cohort study by the Coronary Vasomotor Disorders International Study (COVADIS) Group. Eur Heart J. 2021;42(44):4592–600.

      Article  Google Scholar 

    Download references

    Author information

    Authors and Affiliations

    Authors

    Corresponding author

    Correspondence to Deepak Acharya.

    Ethics declarations

    Conflict of Interests

    The authors declare no competing interests.

    Human and Animal Rights and Informed Consent

    This article does not contain any studies with human or animal subjects performed by any of the authors.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    This article is part of the Topical Collection on Ischemic Heart Disease

    Rights and permissions

    Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Ajmal, M., Chatterjee, A. & Acharya, D. Persistent or Recurrent Angina Following Percutaneous Coronary Revascularization. Curr Cardiol Rep 24, 1837–1848 (2022). https://doi.org/10.1007/s11886-022-01820-3

    Download citation

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s11886-022-01820-3

    Keywords

    Navigation