Skip to main content

Advertisement

Log in

High-Sensitivity Troponins in Cardiovascular Disease

  • Myocardial Disease (AA and G Sinagra, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Each new troponin assay generation is more sensitive, with recent generation high-sensitivity troponin (hsTn) assays able to detect minimal myocardial injury, even in asymptomatic patients.

Purpose of the Review

We reviewed recent information on the use of hsTn assays for assessing acute and chronic cardiovascular disease.

Recent Findings

hsTn is used for early emergency department diagnosis, accelerating early discharge with a low event rate comparable if not better than current strategies. Low levels of hsTn are detected in a variety of chronic cardiac and non-cardiac conditions, non-disease conditions including heart failure, chemotherapy, and others. These elevations identify a population at increased risk for long-term cardiovascular events. However, management strategies remain unclear.

Summary

hsTn has substantial advantages in emergency department use. They hold promise for identifying subclinical cardiac disease, with the potential for earlier intervention with the possibility of decreasing disease progression. Additional studies, however, are needed to determine if this strategy will lead to improved outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. The Joint European Society of Cardiology/American College of Cardiology Committee. Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol. 2000;36:959–69.

    Article  Google Scholar 

  2. •• Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol. 2018;30(72):2231–64 Updated recommendations for classification of myocardial infarction. A must read for background for classification of troponin elevations.

    Article  Google Scholar 

  3. Anand A, Shah ASV, Beshiri A, Jaffe AS, Mills NL. Global adoption of high-sensitivity cardiac troponins and the universal definition of myocardial infarction. Clin Chem. 2019;65:484–9.

    Article  CAS  PubMed  Google Scholar 

  4. Wu AHB, Christenson RH, Greene DN, Jaffe AS, Kavsak PA, Ordonez-Llanos J, et al. Clinical laboratory practice recommendations for the use of cardiac troponin in acute coronary syndrome: expert opinion from the Academy of the American Association for Clinical Chemistry and the Task Force on Clinical Applications of Cardiac Bio-Markers of the International Federation of Clinical Chemistry and Laboratory Medicine. Clin Chem. 2018;64:645–55.

    Article  CAS  PubMed  Google Scholar 

  5. • Collinson PO, Heung YM, Gaze D, Boa F, Senior R, Christenson R, et al. Influence of population selection on the 99th percentile reference value for cardiac troponin assays. Clin Chem. 2012;58:219–25 Describes how the 99th percentile is variable depending on baseline patient characteristics.

    Article  CAS  PubMed  Google Scholar 

  6. • Wallentin L, Lindholm D, Siegbahn A, Wernroth L, Becker RC, Cannon CP, et al. Biomarkers in relation to the effects of ticagrelor in comparison with clopidogrel in non-ST-elevation acute coronary syndrome patients managed with or without in-hospital revascularization: a substudy from the Prospective Randomized Platelet Inhibition and Patient Outcomes (PLATO) trial. Circulation. 2014;129:293–303 Differential response to type category based on high sensitivity troponin results.

    Article  CAS  PubMed  Google Scholar 

  7. Braunwald E, Morrow DA. Unstable angina: is it time for a requiem? Circulation. 2013;18(127):2452–7.

    Article  Google Scholar 

  8. Puelacher C, Gugala M, Adamson PD, Shah A, Chapman AR, Anand A, et al. Incidence and outcomes of unstable angina compared with non-ST-elevation myocardial infarction. Heart. 2019; Apr 24E published.

  9. D’Souza M, Sarkisian L, Saaby L, Poulsen TS, Gerke O, Larsen TB, et al. Diagnosis of unstable angina pectoris has declined markedly with the advent of more sensitive troponin assays. Am J Med. 2015;128:852–60.

    Article  PubMed  Google Scholar 

  10. Kontos MC, Fritz LM, Anderson FP, Tatum JL, Ornato JP, Jesse RL. Impact of the troponin standard on the prevalence of acute myocardial infarction. Am Heart J. 2003;146:446–52.

    Article  CAS  PubMed  Google Scholar 

  11. Lee G, Twerenbold R, Tanglay Y, Reichlin T, Honegger U, Wagener M, et al. Clinical benefit of high-sensitivity cardiac troponin I in the detection of exercise-induced myocardial ischemia. Am Heart J. 2016;173:8–17.

    Article  CAS  PubMed  Google Scholar 

  12. Turer AT, Addo TA, Martin JL, Sabatine MS, Lewis GD, Gerszten RE, et al. Myocardial ischemia induced by rapid atrial pacing causes troponin T release detectable by a highly sensitive assay: insights from a coronary sinus sampling study. J Am Coll Cardiol. 2011;57:2398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. • Mueller C, Giannitsis E, Christ M, Ordóñez-Llanos J, de Filippi C, McCord J, et al. TRAPID-AMI Investigators. Multicenter evaluation of a 0-hour/1-hour algorithm in the diagnosis of myocardial infarction with high-sensitivity cardiac troponin T. Ann Emerg Med. 2016;68:76–87 First large study to describe the 1 hour rule out process.

    Article  PubMed  Google Scholar 

  14. McCord J, Cabrera R, Lindahl B, Giannitsis E, Evans K, Nowak R, et al. Prognostic utility of a modified HEART score in chest pain patients in the emergency department. Circ Cardiovasc Qual Outcomes. 2017;10:e003101.

    Article  PubMed  Google Scholar 

  15. Sandoval Y, Nowak R, de Filippi CR, Christenson RH, Peacock WF, McCord J, et al. Myocardial infarction risk stratification with a single measurement of high-sensitivity troponin I. J Am Coll Cardiol. 2019;74:271–82.

    Article  CAS  PubMed  Google Scholar 

  16. Ljung L, Lindahl B, Eggers KM, Frick M, Linder R, Löfmark HB, et al. A rule-out strategy based on high-sensitivity troponin and HEART score reduces hospital admissions. Ann Emerg Med. 2019;73:491–9.

    Article  PubMed  Google Scholar 

  17. Carlton EW, Khattab A, Greaves K. Identifying patients suitable for discharge after a single-presentation high-sensitivity troponin result: a comparison of five established risk scores and two high-sensitivity assays. Ann Emerg Med. 2015;66:635–45.

    Article  PubMed  Google Scholar 

  18. Boeddinghaus J, Nestelberger T, Badertscher P, Twerenbold R, Fitze B, Wussler D, et al. Predicting acute myocardial infarction with a single blood draw. Clin Chem. 2019;65:437–50.

    Article  CAS  PubMed  Google Scholar 

  19. • Shah AS, Anand A, Sandoval Y, Lee KK, Smith SW, Adamson PD, et al. High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome: a cohort study. Lancet. 2015;386:2481–8 First large study using high sensitivity troponin I for MI rule out. Defines the role of single marker assessment, both advantages and limitations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. • Bularga A, Lee KK, Stewart S, Ferry AV, Chapman AR, Marshall L, et al. High-sensitivity troponin and the application of risk stratification thresholds in patients with suspected acute coronary syndrome. Circulation. 2019;140:1557–68 Demonstrates in a large number of patients that troponin values <99th percentile are at substantial risk for long-term events.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chew DP, Lambrakis K, Blyth A, Seshadri A, Edmonds MJR, Briffa T, et al. A randomized trial of a 1-hour troponin t protocol in suspected acute coronary syndromes: the Rapid Assessment of Possible Acute Coronary Syndrome in the Emergency Department With High-Sensitivity Troponin T Study (RAPID-TnT). Circulation. 2019;140:1543–56.

    Article  PubMed  Google Scholar 

  22. Morawiec B, Boeddinghaus J, Wussler D, Badertscher P, Koechlin L, Metry F, et al. Modified HEART score and high-sensitivity cardiac troponin in patients with suspected acute myocardial infarction. J Am Coll Cardiol. 2019;73:873–5.

    Article  PubMed  Google Scholar 

  23. Chapman AR, Hesse K, Andrews J, Ken Lee K, Anand A, Shah ASV, et al. High-sensitivity cardiac troponin i and clinical risk scores in patients with suspected acute coronary syndrome. Circulation. 2018;138:1654–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. • Nestelberger T, Wildi K, Boeddinghaus J, Twerenbold R, Reichlin T, Giménez MR, et al. Characterization of the observe zone of the ESC 2015 high-sensitivity cardiac troponin 0h/1h-algorithm for the early diagnosis of acute myocardial infarction. Int J Cardiol. 2016;207:238–45 Describes outcomes in intermediate/observation patients.

    Article  PubMed  Google Scholar 

  25. Twerenbold R, Jaeger C, Rubini Gimenez M, Wildi K, Reichlin T, Nestelberger T, et al. Impact of high-sensitivity cardiac troponin on use of coronary angiography, cardiac stress testing, and time to discharge in suspected acute myocardial infarction. Eur Heart J. 2016;37:3324–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. • Vigen R, Kutscher P, Fernandez F, Yu A, Bertulfo B, Hashim IA, et al. Evaluation of a novel rule-out myocardial infarction protocol incorporating high-sensitivity troponin t in a US hospital. Circulation. 2018;138:2061–3 First description of high sensitive troponins used in the United States for MI rule out. Unique feature of this study is defining higher troponins has abnormal rather than rule ends.

    Article  PubMed  Google Scholar 

  27. Twerenbold R, Costabel JP, Nestelberger T, Campos R, Wussler D, Arbucci R, et al. Outcome of applying the ESC 0/1-hour algorithm in patients with suspected myocardial infarction. Mueller C. J Am Coll Cardiol. 2019;74:483–94.

    Article  PubMed  Google Scholar 

  28. Stoyanov KM, Hund H, Biener M, Gandowitz J, Riedle C, Löhr J, et al. RAPID-CPU: a prospective study on implementation of the ESC 0/1-hour algorithm and safety of discharge after rule-out of myocardial infarction. Eur Heart J Acute Cardiovasc Care. 2019;12 in press.

  29. Caposino PV, Kondratovich MV. Considerations for single-measurement risk-stratification strategies for myocardial infarction using cardiac troponin assays. J Am Coll Cardiol. 2019;74:283–4.

    Article  PubMed  Google Scholar 

  30. • Cullen LA, Mills NL, Mahler S, Body R. Early rule-out and rule-in strategies for myocardial infarction. Clin Chem. 2017;63:129–39 Good description of the advantages and limitations of “rule in” and “rule out” strategies using high sensitivity troponins.

    Article  CAS  PubMed  Google Scholar 

  31. Neumann JT, Twerenbold R, Ojeda F, Sörensen NA, Chapman AR, ASV S, et al. Application of high-sensitivity troponin in suspected myocardial infarction. N Engl J Med. 2019;380:2529–40.

    Article  CAS  PubMed  Google Scholar 

  32. Shah AS, McAllister DA, Mills R, Lee KK, Churchhouse AM, Fleming KM, et al. Sensitive troponin assay and the classification of myocardial infarction. Am J Med. 2015;128:493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sarkisian L, Saaby L, Poulsen TS, Gerke O, Jangaard N, Hosbond S, et al. Clinical characteristics and outcomes of patients with myocardial infarction, myocardial injury, and nonelevated troponins. Am J Med. 2016;129:446.e5–446.

    Article  Google Scholar 

  34. Cediel G, Gonzalez-Del-Hoyo M, Carrasquer A, Sanchez R, Boqué C, Bardají A. Outcomes with type 2 myocardial infarction compared with non-ischaemic myocardial injury. Heart. 2017;103:616–22.

    Article  PubMed  Google Scholar 

  35. Saaby L, Poulsen TS, Diederichsen AC, Hosbond S, Larsen TB, Schmidt H, et al. Mortality rate in type 2 myocardial infarction: observations from an unselected hospital cohort. Am J Med. 2014;127:295–302.

    Article  PubMed  Google Scholar 

  36. Chapman AR, Shah ASV, Lee KK, Anand A, Francis O, Adamson P, et al. Long-term outcomes in patients with type 2 myocardial infarction and myocardial injury. Circulation. 2018;137:1236–124.

    Article  PubMed  PubMed Central  Google Scholar 

  37. de Lemos JA, Morrow DA, de Filippi CR. Highly sensitive troponin assays and the cardiology community: a love/hate relationship? Clin Chem. 2011;57:826–9.

    Article  PubMed  CAS  Google Scholar 

  38. • Shah ASV, Sandoval Y, Noaman A, Sexter A, Vaswani A, Smith SW, et al. Patient selection for high sensitivity cardiac troponin testing and diagnosis of myocardial infarction: prospective cohort study. BMJ. 2017;359:j4788 Study demonstrating different threshold for troponin sampling in the UK and United States.

    Article  PubMed  PubMed Central  Google Scholar 

  39. •• Kociol RD, Pang PS, Gheorghiade M, Fonarow GC, O’Connor CM, Felker GM. Troponin elevation in heart failure prevalence, mechanisms, and clinical implications. J Am Coll Cardiol. 2010;28(56):1071–8 Good summary of the association of troponin and heart failure.

    Article  CAS  Google Scholar 

  40. Evans JDW, Dobbin SJH, Pettit SJ, Di Angelantonio E, Willeit P. High-sensitivity cardiac troponin and new-onset heart failure: a systematic review and meta-analysis of 67,063 patients with 4,165 incident heart failure events. JACC Heart Fail. 2018;6:187–97.

    Article  PubMed  Google Scholar 

  41. • Masson S, Anand I, Favero C, Barlera S, Vago T, Bertocchi F, et al. Serial measurement of cardiac troponin T using a highly sensitive assay in patients with chronic heart failure: data from 2 large randomized clinical trials. Circulation. 2012;125:280–8 First study to demonstrate that troponin is a dynamic process that changes over time that has prognostic significance.

    Article  CAS  PubMed  Google Scholar 

  42. Jhund PS, Claggett BL, Voors AA, Zile MR, Packer M, Pieske BM, et al. Elevation in high-sensitivity troponin T in heart failure and preserved ejection fraction and influence of treatment with the angiotensin receptor neprilysin inhibitor LCZ696. Circ Heart Fail. 2014;7:953–9.

    Article  CAS  PubMed  Google Scholar 

  43. Morrow DA, Velazquez EJ, DeVore AD, Prescott MF, Duffy CI, Gurmu Y, et al. Cardiovascular biomarkers in patients with acute decompensated heart failure randomized to sacubitril-valsartan or enalapril in the PIONEER-HF trial. Eur Heart J. 2019;40:3345–52.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Aakre KM, Omland T. Physical activity, exercise and cardiac troponins: clinical implications. Prog Cardiovasc Dis. 2019;62:108–15.

    Article  PubMed  Google Scholar 

  45. • Shave R, Baggish A, George K, Wood M, Scharhag J, Whyte G, et al. Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J Am Coll Cardiol. 2010;56:169–76 Good summary of the association with troponin and exercise.

    Article  CAS  PubMed  Google Scholar 

  46. Lara B, Salinero JJ, Gallo-Salazar C, Areces F, Ruiz-Vicente D, Martinez M, et al. Elevation of cardiac troponins after endurance running competitions. Circulation. 2019;139:709–11.

    Article  PubMed  Google Scholar 

  47. Aengevaeren VL, Hopman MTE, Thompson PD, Bakker EA, George KP, Thijssen DHJ, et al. Exercise-induced cardiac troponin I increase and incident mortality and cardiovascular events. Circulation. 2019;140:804–14.

    Article  PubMed  Google Scholar 

  48. Neilan TG, Januzzi JL, Lee-Lewandrowski E, Ton-Nu TT, Yoerger DM, Jassal DS, et al. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation. 2006;114:2325–33.

    Article  PubMed  Google Scholar 

  49. Mair J, Lindahl B, Hammarsten O, Müller C, Giannitsis E, Huber K, et al. How is cardiac troponin released from injured myocardium? Eur Heart J Acute Cardiovasc Care. 2018;7:553–60.

    Article  PubMed  Google Scholar 

  50. • Sandoval Y, Jaffe AS. Type 2 myocardial infarction: JACC review topic of the week. J Am Coll Cardiol. 2019;73:1846–60 Comprehensive review of type 2 myocardial infarction.

    Article  PubMed  Google Scholar 

  51. • Gard A, Lindahl B, Batra G, Hadziosmanovic N, Hjort M, Szummer KE, et al. Interphysician agreement on subclassification of myocardial infarction. Heart. 2018;104:1284–91 Good study illustrating the difficulties in classifying patients is having type 2 MI or myocardial infarction.

    Article  PubMed  PubMed Central  Google Scholar 

  52. •• Januzzi JL Jr, Mahler SA, Christenson RH, Rymer J, Newby LK, Body R, et al. Recommendations for institutions transitioning to high-sensitivity troponin testing: JACC Scientific Expert Panel. J Am Coll Cardiol. 2019;73:1059–77 Important guidelines for US hospitals as the change from contemporary to high sensitivity troponin assays.

    Article  CAS  PubMed  Google Scholar 

  53. •• McCarthy C, Murphy S, Cohen JA, Rehman S, Jones-O’Connor M, Olshan DS, et al. Misclassification of myocardial injury as myocardial infarction: implications for assessing outcomes in value-based programs. JAMA Cardiol. 2019;4:460–4 Important study pointing out the implications of identifying a patient is having.

    Article  PubMed  PubMed Central  Google Scholar 

  54. McCarthy CP. Type 2 myocardial infarction and value-based programs: cutting the supply in the absence of demand. Am J Med. 2019;132:1117–8.

    Article  PubMed  Google Scholar 

  55. McCarthy CP, Vaduganathan M, Singh A, Song Z, Blankstein R, Gaggin HK, et al. Type 2 myocardial infarction and the hospital readmission reduction program. J Am Coll Cardiol. 2018;72:1166–70.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Garcia-Garcia HM, McFadden EP, von Birgelen C, Rademaker-Havinga T, Spitzer E, Kleiman NS, et al. Impact of periprocedural myocardial biomarker elevation on mortality following elective percutaneous coronary intervention. JACC Cardiovasc Interv. 2019;12:1954–62.

    Article  PubMed  Google Scholar 

  57. Zanchin T, Räber L, Koskinas KC, Piccolo R, Jüni P, Pilgrim T, et al. Preprocedural high-sensitivity cardiac troponin T and clinical outcomes in patients with stable coronary artery disease undergoing elective percutaneous coronary intervention. Circ Cardiovasc Interv. 2016;9(6):e003202.

    Article  CAS  PubMed  Google Scholar 

  58. Moussa ID, Klein LW, Shah B, Mehran R, Mack MJ, Brilakis ES, et al. Consideration of a new definition of clinically relevant myocardial infarction after coronary revascularization: an expert consensus document from the Society for Cardiovascular Angiography and Interventions (SCAI). J Am Coll Cardiol. 2013;62:1563–70.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chin CT, Wang TY, Li S, Wiviott SD, de Lemos JA, Kontos MC, et al. Comparison of the prognostic value of peak creatine kinase-MB and troponin levels among patients with acute myocardial infarction: a report from the Acute Coronary Treatment and Intervention Outcomes Network Registry-get with the guidelines. Clin Cardiol. 2012;35:424–9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zeitouni M, Silvain J, Guedeney P, Kerneis M, Yan Y, Overtchouk P, et al. Periprocedural myocardial infarction and injury in elective coronary stenting. Eur Heart J. 2018;1(39):1100–9.

    Article  CAS  Google Scholar 

  61. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. Circulation. 2012;126:2020–35.

    Article  PubMed  Google Scholar 

  62. • Tricoci P, Newby LK, Clare RM, Leonardi S, Gibson CM, Giugliano RP, et al. Prognostic and practical validation of current definitions of myocardial infarction associated with percutaneous coronary intervention. JACC Cardiovasc Interv. 2018;11:856–64 Indicates that if detection of troponin after PCI is tied to ischemic events, it has the same prognostic value as CK-MB.

    Article  PubMed  Google Scholar 

  63. •• Devereaux PJ, Szczeklik W. Myocardial injury after non-cardiac surgery: diagnosis and management. Eur Heart J. 2019; Good summary of postsurgical troponin elevations.

  64. • Devereaux PJ, Biccard BM, Sigamani A, Xavier D, Chan MTV, Srinathan SK, et al. Association of postoperative high-sensitivity troponin levels with myocardial injury and 30-day mortality among patients undergoing noncardiac surgery. JAMA. 2017;317:1642–51 Demonstrates that troponin elevations after noncardiac surgery are not benign.

    Article  CAS  PubMed  Google Scholar 

  65. de Filippi CR, Herzog CA. Interpreting cardiac biomarkers in the setting of chronic kidney disease. Clin Chem. 2017;63:59–65.

    Article  CAS  Google Scholar 

  66. Miller-Hodges E, Anand A, Shah ASV, Chapman AR, Gallacher P, Lee KK, et al. High-sensitivity cardiac troponin and the risk stratification of patients with renal impairment presenting with suspected acute coronary syndrome. Circulation. 2018;137:425–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. •• de Filippi CR, de Lemos JA, Christenson RH, Gottdiener JS, Kop WJ, Zhan M, et al. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA. 2010;304:2494–502 Demonstrates that non elevated high sensitivity troponin in asymptomatic adults is not static but dynamic, and that these changes over time has prognostic value.

    Article  Google Scholar 

  68. Blankenberg S, Salomaa V, Makarova N, Ojeda F, Wild P, Lackner KJ, et al. Troponin I and cardiovascular risk prediction in the general population: the BiomarCaRE consortium. Eur Heart J. 2016;37:2428–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jia X, Sun W, Hoogeveen RC, Nambi V, Matsushita K, Folsom AR, et al. High-sensitivity troponin I and incident coronary events, stroke, heart failure hospitalization, and mortality in the ARIC study. Circulation. 2019;139:2642–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Welsh P, Preiss D, Hayward C, Shah ASV, McAllister D, Briggs A, et al. Cardiac troponin T and troponin I in the general population. Circulation. 2019;139:2754–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Welsh P, Preiss D, Shah ASV, McAllister D, Briggs A, Boachie C, et al. Comparison between high-sensitivity cardiac troponin T and cardiac troponin I in a large general population cohort. Clin Chem. 2018;64:1607–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dispenzieri A, Gertz MA, Kumar SK, Lacy MQ, Kyle RA, Saenger AK, et al. High sensitivity cardiac troponin T in patients with immunoglobulin light chain amyloidosis. Heart. 2014;100:383–8.

    Article  CAS  PubMed  Google Scholar 

  73. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5:596–603.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cardinale D, Ciceri F, Latini R, Franzosi MG, Sandri MT, Civelli M, et al. Anthracycline-induced cardiotoxicity: a multicenter randomised trial comparing two strategies for guiding prevention with enalapril: The International CardioOncology Society-one trial. Eur J Cancer. 2018;94:126–37.

    Article  CAS  PubMed  Google Scholar 

  75. Poklepovic A, Qu Y, Dickinson M, Kontos MC, Kmieciak M, Schultz E, et al. Randomized study of doxorubicin-based chemotherapy regimens, with and without sildenafil, with analysis of intermediate cardiac markers. Cardiooncology. 2018;4.

  76. Chin CW, Shah AS, McAllister DA, Joanna Cowell S, Alam S, Langrish JP, et al. High-sensitivity troponin I concentrations are a marker of an advanced hypertrophic response and adverse outcomes in patients with aortic stenosis. Eur Heart J. 2014;35:2312–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pandey A, Patel KV, Vongpatanasin W, Ayers C, Berry JD, Mentz RJ, et al. Incorporation of biomarkers into risk assessment for allocation of antihypertensive medication according to the 2017 ACC/AHA high blood pressure guideline: a pooled cohort analysis. Circulation. 2019;140:2076–88.

    Article  CAS  PubMed  Google Scholar 

  78. Rubini Gimenez M, Twerenbold R, Reichlin T, Wildi K, Haaf P, Schaefer M, et al. Direct comparison of high-sensitivity-cardiac troponin I vs. T for the early diagnosis of acute myocardial infarction. Eur Heart J. 2014;35:2303–11.

    Article  CAS  PubMed  Google Scholar 

  79. Sigurdardottir FD, Lyngbakken MN, Holmen OL, Dalen H, Hveem K, Røsjø H, et al. Relative prognostic value of cardiac troponin I and C-reactive protein in the general population (from the Nord-Trøndelag Health [HUNT] Study). Am J Cardiol. 2018;121:949–55.

    Article  CAS  PubMed  Google Scholar 

  80. Baron T, Hambraeus K, Sundström J, Erlinge D, Jernberg T, Lindahl B, et al. Impact on long-term mortality of presence of obstructive coronary artery disease and classification of myocardial infarction. Am J Med. 2016;129:398–406.

    Article  PubMed  Google Scholar 

  81. Nestelberger T, Boeddinghaus J, Badertscher P, Twerenbold R, Wildi K, Breitenbücher D, et al. Effect of definition on incidence and prognosis of type 2 myocardial infarction. J Am Coll Cardiol. 2017;70:1558–68.

    Article  PubMed  Google Scholar 

  82. Ford I, Shah AS, Zhang R, McAllister DA, Strachan FE, Caslake M, et al. High-sensitivity cardiac troponin, statin therapy, and risk of coronary heart disease. J Am Coll Cardiol. 2016;27(68):2719–28.

    Article  CAS  Google Scholar 

  83. Everett BM, Zeller T, Glynn RJ, Ridker PM, Blankenberg S. High-sensitivity cardiac troponin I and B-type natriuretic peptide as predictors of vascular events in primary prevention: impact of statin therapy. Circulation. 2015;131:1851–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Omland T, Pfeffer MA, Solomon SD, de Lemos JA, Røsjø H, Šaltytė Benth J, et al. Prognostic value of cardiac troponin I measured with a highly sensitive assay in patients with stable coronary artery disease. J Am Coll Cardiol. 2013;26(61):1240–9.

    Article  CAS  Google Scholar 

  85. Shah ASV, Anand A, Strachan FE, Ferry AV, Lee KK, Chapman AR, et al. High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial. Lancet. 2018;392:919–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Devereaux PJ, Duceppe E, Guyatt G, Tandon V, Rodseth R, Biccard BM, et al. Dabigatran in patients with myocardial injury after non-cardiac surgery (MANAGE): an international, randomised, placebo-controlled trial. Lancet. 2018;391:2325–34.

    Article  CAS  PubMed  Google Scholar 

  87. Lambrakis K, French JK, Scott IA, Briffa T, Brieger D, Farkouh ME, et al. The appropriateness of coronary investigation in myocardial injury and type 2 myocardial infarction (ACT-2): a randomized trial design. Am Heart J. 2019;208:11–20.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Kontos.

Ethics declarations

Conflict of Interest

Michael C. Kontos and Jeremy S. Turlington declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Myocardial Disease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kontos, M.C., Turlington, J.S. High-Sensitivity Troponins in Cardiovascular Disease. Curr Cardiol Rep 22, 30 (2020). https://doi.org/10.1007/s11886-020-01279-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-020-01279-0

Keywords

Navigation