Skip to main content
Log in

Role of Cardiac Magnetic Resonance Imaging in Valvular Heart Disease: Diagnosis, Assessment, and Management

  • Valvular Heart Disease (TL Kiefer, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article will review the current techniques in cardiac magnetic resonance imaging (CMR) for diagnosing and assessing primary valvular heart disease.

Recent Findings

The recent advancements in CMR have led to an increased role of this modality for qualifying and quantifying various native valve diseases. Phase-contrast velocity encoded imaging is a well-established technique that can be used to quantify aortic and pulmonic flow. This technique, combined with the improved ability for CMR to obtain accurate left and right ventricular volumetrics, has allowed for increased accuracy and reproducibility in assessing valvular dysfunction. Advancements in CMR technology also allows for improved spatial and temporal resolution imaging of various valves and their regurgitant or stenotic jets. Therefore, CMR can be a powerful tool in evaluation of native valvular heart disease.

Summary

The role of CMR in assessing valvular heart disease is growing and being recognized in recent guidelines. CMR has the ability to assess valve morphology along with qualifying and quantifying valvular disease. In addition, the ability to obtain accurate volumetric measurements may improve more precise management strategies and may lead to improvements in mortality and morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368:1005–11. https://doi.org/10.1016/S0140-6736(06)69208-8.

    Article  PubMed  Google Scholar 

  2. •• Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, et al. Recommendations for noninvasive evaluation of native valvular regurgitation a report from the American Society of Echocardiography developed in collaboration with the society for cardiovascular magnetic resonance. JASE. 2017;30(4):303–71. https://doi.org/10.1016/j.echo.2017.01.007. Defines the current recommendations for the qualitative and quantitative assessment of for native valve regurgitation by CMR and echo.

    Article  Google Scholar 

  3. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg. 2014;148:e1–132. https://doi.org/10.1016/j.jtcvs.2014.05.014.

    Article  PubMed  Google Scholar 

  4. Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol. 2010;55:2614–62. https://doi.org/10.1016/j.jacc.2009.11.011.

    Article  PubMed  Google Scholar 

  5. Sommer G, Bremerich J, Lund G. Magnetic resonance imaging in Valvular heart disease: clinical application and current role for patient management. J Magn Reson Imaging. 2012;35:1241–52. https://doi.org/10.1002/jmri.23544.

    Article  PubMed  Google Scholar 

  6. Griswold MA, Jakob PM, Heidemann RM, , Nittka M, Jellus V, Wang J Nittka M, Jellus V, Wang J, Kiefer B, Haase A Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47:1202–1210. DOI: https://doi.org/10.1002/mrm.10171.

    Article  PubMed  Google Scholar 

  7. Myerson SG. Heart valve disease: investigation by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:7. https://doi.org/10.1186/1532-429X-14-7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bieri O, Scheffler K. Fundamental of balanced steady state free precession MRI. J Magn Reson Imaging. 2013;38:2–11. https://doi.org/10.1002/jmri.24163.

    Article  PubMed  Google Scholar 

  9. Van Dijk P. ECG-triggered NMR imaging of the heart. Diagn Imaging Clin Med. 1984;53:29–37.

    PubMed  Google Scholar 

  10. Lenz GW, Haacke EM, White RD. Retrospective cardiac gating: a review of technical aspects and future directions. Magn Reson Imaging. 1989;7:445–55.

    Article  CAS  Google Scholar 

  11. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E. The Society for Cardiovascular Magnetic Resonance Board of Trustees task force on standardized protocols. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson. 2013;15:91. https://doi.org/10.1186/1532-429X-15-91.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Longmore DB, Klipstein RH, Underwood SR, Firmin DN, Hounsfield GN, Watanabe M, et al. Dimensional accuracy of magnetic resonance in studies of the heart. Lancet. 1985;1:1360–2.

    Article  CAS  Google Scholar 

  13. Dursun M, Yılmaz S, Yılmaz E, Yılmaz R, Onur İ, Oflaz H, et al. The utility of cardiac MRI in diagnosis of infective endocarditis: preliminary results. Diagn Interv Radiol. 2015;21(1):28–33. https://doi.org/10.5152/dir.2014.14239.

    Article  PubMed  Google Scholar 

  14. Caduff JH, Hernandez RJ, Ludomirsky A. MR visualization of aortic valve vegetations. J Comput Assist Tomogr. 1996;20:613–5.

    Article  CAS  Google Scholar 

  15. Wagner S, Auffermann W, Buser P, Lim TH, Kircher B, Pflugfelder P, et al. Diagnostic accuracy and estimation of the severity of valvular regurgitation from the signal void on cine magnetic resonance images. Am Heart J. 1989;118:760–7.

    Article  CAS  Google Scholar 

  16. Sievers B, Brandts B, Franken U, Trappe HJ. Cardiovascular magnetic resonance imaging demonstrates mitral valve endocarditis. Am J Med. 2003;115:681–2.

    Article  Google Scholar 

  17. Sechtem U, Pflugfelder PW, Gould RG, Cassidy MM, Higgins CB. Measurement of right and left ventricular volumes in healthy individuals with cine MR imaging. Radiology. 1987;163:697–702. https://doi.org/10.1148/radiology.163.3.3575717.

    Article  CAS  PubMed  Google Scholar 

  18. Katz J, Whang J, Boxt LM, Barst RJ. Estimation of right ventricular mass in normal subjects and in patients with pulmonary hypertension by magnetic resonance imaging. J Am Coll Cardiol. 1993;21:1475–81.

    Article  CAS  Google Scholar 

  19. Clarke CJ, Gurka MJ, Norton PT, Kramer CM, Hoyer AW. Assessment of the accuracy and reproducibility of RV volume measurements by CMR in congenital heart disease. J Am Coll Cardiol Img. 2012;5:28–37. https://doi.org/10.1016/j.jcmg.2011.05.007.

    Article  Google Scholar 

  20. Alfakih K, Plein S, Bloomer T, Jones T, Ridgeway J, Sivananthan M. Comparison of right ventricular volume measurements between axial and short axis orientation using steady-state free precession magnetic resonance imaging. J Magn Reson Imaging. 2003;18:25–32. https://doi.org/10.1002/jmri.10329.

    Article  PubMed  Google Scholar 

  21. Evans AJ, Blinder RA, Herfkens RJ, Spritzer CE, Kuethe DO, Fram EK, et al. Effects of turbulence on signal intensity in gradient echo images. Investig Radiol. 1988;23:512–8.

    Article  CAS  Google Scholar 

  22. Malayeri AA, Johnson WC, Macedo R, Bathon J, Lima JA, Bluemke DA. Cardiac cine MRI: quantification of the relationship between fast gradient echo and steady-state free precession for determination of myocardial mass and volumes. J Magn Reson Imaging. 2008;28:60–6. https://doi.org/10.1002/jmri.21405.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aurigemma G, Reichek N, Schiebler M, Axel L. Evaluation of aortic regurgitation by cardiac cine magnetic resonance imaging: planar analysis and comparison to Doppler echocardiography. Cardiology. 1991;78(4):340–7. https://doi.org/10.1159/000174815.

    Article  CAS  PubMed  Google Scholar 

  24. Ozdogan O, Yuksel A, Gurgun C, Kayikcioglu M, Yavuzgil O, Cinar CS. Evaluation of the severity of mitral regurgitation by the use of signal void in magnetic resonance imaging. Echocardiography. 2009;26(10):1127–35. https://doi.org/10.1111/j.1540-8175.2009.00968.x.

    Article  PubMed  Google Scholar 

  25. Spielmann RP, Schneider O, Thiele F, Heller M, Bucheler E. Appearance of poststenotic jets in MRI: dependence on flow velocity and on imaging parameters. Magn Reson Imaging. 1991;9:67–72.

    Article  CAS  Google Scholar 

  26. Sondergaard L, Stahlberg F, Thomsen C. Magnetic resonance imaging of valvular heart disease. J Magn Reson Imaging. 1999;10:627–38.

    Article  CAS  Google Scholar 

  27. Utz JA, Herfkens RJ, Heinsimer JA, Shimakawa A, Glover G, Pelc N. Valvular regurgitation: dynamic MR imaging. Radiology. 1988;168:91–4.

    Article  CAS  Google Scholar 

  28. Mitchell L, Jenkins JPR, Watson Y, Rowlands DJ, Isherwood I. Diagnosis and assessment of mitral and aortic valve disease by cine-flow magnetic resonance imaging. Magn Reson Med. 1989;12:181–97.

    Article  CAS  Google Scholar 

  29. Cawley PJ, Maki JH, Otton CM. Cardiovascular magnetic resonance imaging for Valvular heart disease technique and validation. Circulation. 2009;119:468–78. https://doi.org/10.1161/CIRCULATIONAHA.107.742486.

    Article  PubMed  Google Scholar 

  30. Underwood SR, Firmin DN, Rees RS, Longmore DB. Magnetic resonance velocity mapping. Clin Phys Physiol Meas. 1990;11(Suppl A):37–43.

    Article  Google Scholar 

  31. Pelc NJ, Herfkens RJ, Shimakawa A, Enzmann DR. Phase contrast cine magnetic resonance imaging. Magn Reson Q. 1991;7:229–54.

    CAS  PubMed  Google Scholar 

  32. Kilner PJ, Gatehouse PD, Firmin DN. Flow measurement by magnetic resonance: a unique asset worth optimising. J Cardiovasc Magn Reson. 2007;9:723–8. https://doi.org/10.1080/10976640701465090.

    Article  PubMed  Google Scholar 

  33. Gatehouse PD, Keegan J, Crowe LA, Masood S, Mohiaddin RH, Kreitner KF, et al. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol. 2005;15:2172–84. https://doi.org/10.1007/s00330-005-2829-3.

    Article  PubMed  Google Scholar 

  34. Firmin DN, Nayler GL, Kilner PJ, Longmore DB. The application of phase shifts in NMR for flow measurement. Magn Reson Med. 1990;14:230–41.

    Article  CAS  Google Scholar 

  35. Gatehouse PD, Rolf MP, Graves MJ, Hofman MB, Totman J, Werner B, et al. Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc MagnReson. 2010;12:5. https://doi.org/10.1186/1532-429X-12-5.

    Article  Google Scholar 

  36. O’Brien KR, Cowan BR, Jain M, Stewart RA, Kerr AJ, Young AA. MRI phase contrast velocity and flow errors in turbulent stenotic jets. J Magn Reson Imaging. 2008;28:210–8. https://doi.org/10.1002/jmri.21395.

    Article  PubMed  Google Scholar 

  37. Hundley WG, Li HF, Hillis LD, Meshack BM, Lange RA, Willard JE, et al. Quantitation of cardiac output with velocity-encoded, phase-difference magnetic resonance imaging. Am J Cardiol. 1995;75:1250–5.

    Article  CAS  Google Scholar 

  38. Sondergaard L, Thomsen C, Stahlberg F, Gymoese E, Lindvig K, Hildebrandt P, et al. Mitral and aortic valvular flow: quantification with MR phase mapping. J Magn Reson Imaging. 1992;2:295–302.

    Article  CAS  Google Scholar 

  39. Mor-Avi V, Jenkins C, Kuhl HP, Nesser HJ, Marwick T, Franke A, et al. Real-time 3-dimensional echocardiographic quantification of left ventricular volumes Multicenter Study for Validation With Magnetic Resonance Imaging and Investigation of Sources of Error. JACC Img. 2008;1(4):413–23. https://doi.org/10.1016/j.jcmg.2008.02.009.

    Article  Google Scholar 

  40. Myerson SG, d'Arcy J, Mohiaddin R, Greenwood JP, Karamitsos TD, Francis JM, et al. Aortic regurgitation quantification using cardiovascular magnetic resonance association with clinical outcome. Circulation. 2012;126:1452–60. https://doi.org/10.1161/CIRCULATIONAHA.111.083600.

    Article  PubMed  Google Scholar 

  41. Chatzimavroudis GP, Walter PG, Oshinski JN, Franch RH, Pettigrew RI, Yoganathan AP. Slice location dependence of aortic regurgitation measurements with MR phase velocity mapping. Mag Reson Med. 1997;37:545–51.

    Article  CAS  Google Scholar 

  42. Cawley PJ, Hamilton-Crai C, Owens DS, Krieger EV, Strugnell WE, Mitsumori L, et al. Prospective comparison of valve regurgitation quantitation by cardiac magnetic resonance imaging and transthoracic echocardiography. Circ Cardiovasc Imaging. 2013;6:48–57. https://doi.org/10.1161/CIRCIMAGING.112.975623.

    Article  PubMed  Google Scholar 

  43. Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Valsangiacomo Buechel ER, et al. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson. 2013 Jun 13;15:51. https://doi.org/10.1186/1532-429X-15-51.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chatzimavroudis GP, Oshinski JN, Franch RH, Walker PG, Yoganathan AP, Pettigrew RI. Evaluation of the precision of magnetic resonance phase velocity mapping for blood flow measurements. J Cardio Mag Reson. 2001;3(1):11–9.

    Article  CAS  Google Scholar 

  45. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson. 2013;15:35. https://doi.org/10.1186/1532-429X-15-35.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Iwamoto Y, Inage A, Tomlinson G, Lee KJ, Grosse-Wortmann L, Seed M, et al. Direct measurement of aortic regurgitation with phase-contrast magnetic resonance is inaccurate: proposal of an alternative method of quantification. Pediatr Radiol. 2014;44(11):1358–69. https://doi.org/10.1007/s00247-014-3017-x.

    Article  PubMed  Google Scholar 

  47. Gelfand EV, Hughes S, Hauser TH, Yeon SB, Goepfert L, Kissinger KV. Severity of mitral and aortic regurgitation as assessed by cardiovascular magnetic resonance: optimizing correlation with Doppler echocardiography. J Cardiovasc Magn Reson. 2006;8(3):503–7.

    Article  Google Scholar 

  48. Topilsky Y, Michelena H, Bichara V, Maalouf J, Mahoney DW, Enriquez-Sarano M, et al. Mitral valve prolapse with mid-late systolic mitral regurgitation: pitfalls of evaluation and clinical outcome compared with holosystolic regurgitation. Circulation. 2012;125(13):1643–51. https://doi.org/10.1161/CIRCULATIONAHA.111.055111.

    Article  PubMed  Google Scholar 

  49. •• Uretsky S, Argulian E, Narula J, Wolff SD. Use of cardiac magnetic resonance imaging in assessing mitral regurgitation: current evidence. J Am Coll Cardiol. 2018;71(5):547–63. https://doi.org/10.1016/j.jacc.2017.12.009. One of the most recent review articles published describing the utility of CMR in the evaluation of mitral regurgitation, including a proposed clinical pathway and guidelines.

    Article  PubMed  Google Scholar 

  50. Hundley WG, Li HF, Willard JE, Landau C, Lange RA, Meshack BM, et al. Magnetic resonance imaging assessment of the severity of mitral regurgitation. Comparison with invasive techniques. Circulation. 1995;92(5):1151–8.

    Article  CAS  Google Scholar 

  51. Myerson SG, d'Arcy J, Christiansen JP, Dobson LE, Mohiaddin R, Francis JM, et al. Determination of clinical outcome in mitral regurgitation with cardiovascular magnetic resonance quantification. Circulation. 2016;133(23):2287–96. https://doi.org/10.1161/CIRCULATIONAHA.115.017888.

    Article  PubMed  Google Scholar 

  52. Dujardin KS, Enriquez-Sarano M, Bailey KR, Nishimura RA, Seward JB, Tajik AJ. Grading of mitral regurgitation by quantitative Doppler echocardiography: calibration by left ventricular angiography in routine clinical practice. Circulation. 1997;96(10):3409–15.

    Article  CAS  Google Scholar 

  53. Lopez-Mattei JC, Ibrahim H, Shaikh KA, Little SH, Shah DJ, Maragiannis D, et al. Comparative assessment of mitral regurgitation severity by transthoracic echocardiography and cardiac magnetic resonance using an integrative and quantitative approach. Am J Cardiol. 2016;117(2):264–70. https://doi.org/10.1016/j.amjcard.2015.10.045.

    Article  PubMed  Google Scholar 

  54. Uretsky S, Gillam L, Lang R, Chaudhry FA, Argulian E, Supariwala A, et al. Discordance between echocardiography and MRI in the assessment of mitral regurgitation severity: a prospective multicenter trial. J Am Coll Cardiol. 2015;65(11):1078–88. https://doi.org/10.1016/j.jacc.2014.12.047.

    Article  PubMed  Google Scholar 

  55. • Penicka M, Vecera J, Mirica DC, Kotrc M, Kockova R, Van Camp G. Prognostic implications of magnetic resonance-derived quantification in asymptomatic patients with organic mitral regurgitation: comparison with doppler echocardiography-derived integrative approach. Circulation. 2018;137(13):1349–60. https://doi.org/10.1161/CIRCULATIONAHA.117.029332. One of the few studies detailing the prognostic implications of CMR use in evaluating MR in asymptomatic individuals.

    Article  PubMed  Google Scholar 

  56. Choi J, Heo R, Hong GR, Chang HJ, Sung JM, Shin SH, et al. Differential impact of three-dimensional color Doppler echocardiography for the quantification of mitral regurgitation according to the severity and characteristics. Circ Cardiovasc Imaging. 2014;7(3):535–44. https://doi.org/10.1161/CIRCIMAGING.113.001457.

    Article  PubMed  Google Scholar 

  57. Thavendiranathan P, Liu S, Datta S, Rajagopalan S, Ryan T, Igo SR, et al. Quantification of chronic functional mitral regurgitation by automated 3-dimensional peak and integrated proximal isovelocity surface area and stroke volume techniques using real-time 3-dimensional volume color Doppler echocardiography: in vitro and clinical validation. Circ Cardiovasc Imaging. 2013;6(1):125–33. https://doi.org/10.1161/CIRCIMAGING.112.980383.

    Article  PubMed  Google Scholar 

  58. Mercer-Rosa L, Yang W, Rychik J, Fogel M, Goldmuntz E. Quantifying pulmonary regurgitation and right ventricular function in surgically repaired tetralogy of Fallot a comparative analysis of echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging. 2012;5:637–43. https://doi.org/10.1161/CIRCIMAGING.112.972588.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Medvedofsky D, Mor-Avi V, Kruse E, Guile B, Ciszek B, Weinert L, et al. Quantification of right ventricular size and function from contrast-enhanced three-dimensional echocardiographic images. J Am Soc Echocardiogry. 2017;30(12):1193–202. https://doi.org/10.1016/j.echo.2017.08.003.

    Article  Google Scholar 

  60. Saremi F, Gera A, Ho SY, Hijazi ZM, Sánchez-Quintana D. CT and MR imaging of the pulmonary valve. Radiographics. 2014 Jan-Feb;34(1):51–71. https://doi.org/10.1148/rg.341135026.

    Article  PubMed  Google Scholar 

  61. Li W, Davlouros PA, Kilner PJ, Pennell DJ, Gibson D, Henein MY, et al. Doppler-echocardiographic assessment of pulmonary regurgitation in adults with repaired tetralogy of Fallot: comparison with cardiovascular magnetic resonance imaging. Am Heart J. 2004;147:165–72.

    Article  Google Scholar 

  62. Rebergen SA, Chin JG, Ottenkamp J, van der Wall EE, de Roos A. Pulmonary regurgitation in the late postoperative follow-up of tetralogy of Fallot. Volumetric quantitation by nuclear magnetic resonance velocity mapping. Circulation. 1993;88:2257–66.

    Article  CAS  Google Scholar 

  63. Vliegen HW, van Straten A, de Roos A, Roest AA, Schoof PH, Zwinderman AH, et al. Magnetic resonance imaging to assess the hemodynamic effects of pulmonary valve replacement in adults late after repair of tetralogy of fallot. Circulation. 2002;106:1703–7.

    Article  Google Scholar 

  64. Therrien J, Provost Y, Merchant N, Williams W, Colman J, Webb G. Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. Am J Cardiol. 2005;95:779–82.

    Article  Google Scholar 

  65. Henkens IR, van Straten A, Schalij MJ, Hazekamp MG, Roos d, van der Wall EE, et al. Predicting outcome of pulmonary valve replacement in adult tetralogy of Fallot patients. Ann Thorac Surg. 2007;83:907–11.

    Article  Google Scholar 

  66. Oosterhof T, van Straten A, Vliegen HW, Meijboom FJ, van Dijk AP, Spijkerboer AM, et al. Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation. 2007 Jul 31;116(5):545–51. https://doi.org/10.1161/CIRCULATIONAHA.106.659664.

    Article  PubMed  Google Scholar 

  67. Jun H, Park EA, Bahn YE, Lee W, Kim HK, Chung JW. Quantification of tricuspid regurgitation using two-dimensional velocity encoding cine: optimal plane and reproducibility. Int J Cardiovasc Imaging. 2015;31(2):233–40. https://doi.org/10.1007/s10554-015-0715-x.

    Article  PubMed  Google Scholar 

  68. Westenberg JJ, Roes SD, Ajmone Marsan N, Binnendijk NM, Doornbos J, Bax JJ, et al. Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology. 2008;249(3):792–800. https://doi.org/10.1148/radiol.2492080146.

    Article  PubMed  Google Scholar 

  69. Moghari MH, Komarlu R, Annese D, Geva T, Powell AJ. Free-breathing steady-state free precession cine cardiac magnetic resonance with respiratory navigator gating. Magn Reson Med. 2015;73(4):1555–61. https://doi.org/10.1002/mrm.25275.

    Article  PubMed  Google Scholar 

  70. Geiger J, Rahsepar AA, Suwa K, Powell A, Ghasemiesfe A, Barker AJ, et al. 4D flow MRI, cardiac function, and T1-mapping: association of valve-mediated changes in aortic hemodynamics with left ventricular remodeling. J Magn Reson Imaging J Magn Reson Imaging. 2018;48(1):121–31. https://doi.org/10.1002/jmri.25916.

    Article  PubMed  Google Scholar 

  71. Podlesnikar T, Delgado V, Bax JJ. Cardiovascular magnetic resonance imaging to assess myocardial fibrosis in valvular heart disease. Int J Cardiovasc Imaging. 2018 Jan;34(1):97–112. https://doi.org/10.1007/s10554-017-1195-y.

    Article  PubMed  Google Scholar 

  72. Auger DA, Zhong X, Epstein FH, Spottiswoode BS. Mapping right ventricular myocardial mechanics using 3D cine DENSE cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:4. https://doi.org/10.1186/1532-429X-14-4.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zorach B, Shaw PW, Bourque J, Kuruvilla S, Balfour PC Jr, Yang Y, et al. Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease. J Cardiovasc Magn Reson. 2018;20(1):14. https://doi.org/10.1186/s12968-018-0435-1.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wigstrom L, Sjoqvist L, Wranne B. Temporally resolved 3D phase-contrast imaging. Magn Reson Med. 1996;36:800–3.

    Article  CAS  Google Scholar 

  75. Pelc NJ, Bernstein MA, Shimakawa A, Glover GH. Encoding strategies for three-direction phase-contrast MR imaging of flow. J Magn Reson Imaging. 1991;1:405–13.

    Article  CAS  Google Scholar 

  76. Napel S, Lee DH, Frayne R, Rutt BK. Visualizing three-dimensional flow with simulated streamlines and three-dimensional phase-contrast MR imaging. J Magn Reson Imaging. 1992;2:143–53.

    Article  CAS  Google Scholar 

  77. Kozerke S, Hasenkam JM, Pedersen EM, Boesiger P. Visualization of flow patterns distal to aortic valve prostheses in humans using a fast approach for cine 3D velocity mapping. J Magn Reson Imaging. 2001;13(5):690–8.

    Article  CAS  Google Scholar 

  78. Brix L, Ringgaard S, Rasmusson A, Sørensen TS, Kim WY. Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions. J Cardiovasc Magn Reson. 2009;11:3. https://doi.org/10.1186/1532-429X-11-3.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nordmeyer S, Riesenkampff E, Crelier G, Khasheei A, Schnackenburg B, Berger F, et al. Flow-sensitive four-dimensional cine magnetic resonance imaging for offline blood flow quantification in multiple vessels: a validation study. J Magn Reson Imaging. 2010;32:677–83. https://doi.org/10.1002/jmri.22280.

    Article  PubMed  Google Scholar 

  80. Nordmeyer S, Riesenkampff E, Messroghli D, Kropf S, Nordmeyer J, Berger F, et al. Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow. J Magn Reson Imaging. 2013;37(1):208–16. https://doi.org/10.1002/jmri.23793.

    Article  PubMed  Google Scholar 

Download references

Funding

Authors receive salary support from the following grants R01 HL131919-01A1 and 5T32EB003841.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Salerno.

Ethics declarations

Conflict of Interest

Roshin C. Mathew and Adrián I. Löffler declare that they have no conflict of interest.

Michael Salerno declares he has no relevant conflicts of interest related to this publication. He does note grants from AstraZeneca and NIH not related to this work. In addition, he receives non-financial support from Seimens Healthineers, also unrelated to this publication.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Valvular Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, R.C., Löffler, A.I. & Salerno, M. Role of Cardiac Magnetic Resonance Imaging in Valvular Heart Disease: Diagnosis, Assessment, and Management. Curr Cardiol Rep 20, 119 (2018). https://doi.org/10.1007/s11886-018-1057-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-018-1057-9

Keywords

Navigation