Skip to main content

Advertisement

Log in

Mechanisms of Cardiomyocyte Proliferation and Differentiation in Development and Regeneration

  • Regenerative Medicine (SM Wu, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Congenital heart disease is the most common birth defect and acquired heart disease is the leading cause of death in adults. Understanding the mechanisms that drive cardiomyocyte proliferation and differentiation has the potential to advance the understanding and potentially the treatment of different cardiac pathologies, ranging from myopathies and heart failure to myocardial infarction. This review focuses on studies aimed at elucidating signal transduction pathways and molecular mechanisms that promote proliferation, differentiation, and regeneration of differentiated heart muscle cells, cardiomyocytes.

Recent Findings

There is now significant evidence that demonstrates cardiomyocytes continue to proliferate into adulthood. Potential regulators have been identified, including cell cycle regulators, extracellular ligands such as neuregulin, epigenetic targets, reactive oxygen species, and microRNA.

Summary

The necessary steps should involve validating and applying the new knowledge about cardiomyocyte regeneration towards the development of therapeutic targets for patients. This will be facilitated by the application of standardized pre-clinical models to study cardiomyocyte regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Zhang Y, Mignone J, MacLellan WR. Cardiac regeneration and stem cells. Physiol Rev. 2015;95(4):1189–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Garbern JC, Lee RT. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell. 2013;12(6):689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014;11(5):276–89.

    Article  PubMed  Google Scholar 

  4. van der Bom T, Zomer AC, Zwinderman AH, Meijboom FJ, Bouma BJ, Mulder BJ. The changing epidemiology of congenital heart disease. Nat Rev Cardiol. 2011;8(1):50–60.

    Article  PubMed  Google Scholar 

  5. van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(21):2241–7.

    Article  PubMed  Google Scholar 

  6. Linzbach AJ. Heart failure from the point of view of quantitative anatomy. Am J Cardiol. 1960;5:370–82.

    Article  CAS  PubMed  Google Scholar 

  7. Rumyantsev PP. Reproduction of cardiac myocytes developing in vivo and its relation to processes of differentiation. In: Carlson BM, editor. Reproduction of growth and hyperplasia of cardiac muscle cells. 3. Chur, Switzerland: Harwood Academic Publishers; 1991. p. 70–157.

    Google Scholar 

  8. Borisov AB, Claycomb WC. Proliferative potential and differentiated characteristics of cultured cardiac muscle cells expressing the SV40 T oncogene. Ann N Y Acad Sci. 1995;752:80–91.

    Article  CAS  PubMed  Google Scholar 

  9. • Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, et al. Dynamics of cell generation and turnover in the human heart. Cell. 2015;161(7):1566–75. This paper presents a growth model of the human heart. Determined that the number of cardiomyocytes is established at birth and remains stable throughout the human lifespan. Carbon dating and population modeling was used to determine that turnover was highest in infants and declined gradually throughout life span. The same hearts were examined by both Bergmann et al. and Mollova et al.

    Article  CAS  PubMed  Google Scholar 

  10. • Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A. 2013;110(4):1446–51. This paper presents a growth model of the human heart. Determined that the number of cardiomyocytes increases in infants and children. The percentages of cardiomyocytes in mitosis and cytokinesis were highest in infants and children; percentages of mitosis decreased to low levels and cytokinesis to zero by adulthood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lal S, Li A, Allen D, Allen PD, Bannon P, Cartmill T, et al. Best practice biobanking of human heart tissue. Biophys Rev. 2015;7(4):399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bergmann O, Zdunek S, Alkass K, Druid H, Bernard S, Frisen J. Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover. Exp Cell Res. 2011;317(2):188–94. doi:10.1016/j.yexcr.2010.08.017.

  14. Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol. 1996;271(5 Pt 2):H2183–9.

    CAS  PubMed  Google Scholar 

  15. Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol. 1996;28(8):1737–46.

    Article  CAS  PubMed  Google Scholar 

  16. Naqvi N, Li M, Calvert JW, Tejada T, Lambert JP, Wu J, et al. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell. 2014;157(4):795–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alkass K, Panula J, Westman M, Wu TD, Guerquin-Kern JL, Bergmann O. No evidence for cardiomyocyte number expansion in preadolescent mice. Cell. 2015;163(4):1026–36.

    Article  CAS  PubMed  Google Scholar 

  18. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298(5601):2188–90.

    Article  CAS  PubMed  Google Scholar 

  20. Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464(7288):606–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 2010;464(7288):601–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oberpriller JO, Oberpriller JC. Response of the adult newt ventricle to injury. J Exp Zool. 1974;187(2):249–53.

    Article  CAS  PubMed  Google Scholar 

  23. Lin Z, Pu WT. Strategies for cardiac regeneration and repair. Sci Transl Med. 2014;6(239):239rv1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sedmera D, Thompson RP. Myocyte proliferation in the developing heart. Dev Dyn. 2011;240(6):1322–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Soufan AT, van den Berg G, Moerland PD, Massink MM, van den Hoff MJ, Moorman AF, et al. Three-dimensional measurement and visualization of morphogenesis applied to cardiac embryology. J Microsc. 2007;225(Pt 3):269–74.

    Article  CAS  PubMed  Google Scholar 

  26. Busk PK, Bartkova J, Strom CC, Wulf-Andersen L, Hinrichsen R, Christoffersen TE, et al. Involvement of cyclin D activity in left ventricle hypertrophy in vivo and in vitro. Cardiovasc Res. 2002;56(1):64–75.

    Article  CAS  PubMed  Google Scholar 

  27. Pasumarthi KB, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res. 2005;96(1):110–8.

    Article  CAS  PubMed  Google Scholar 

  28. Zhong W, Mao S, Tobis S, Angelis E, Jordan MC, Roos KP, et al. Hypertrophic growth in cardiac myocytes is mediated by Myc through a cyclin D2-dependent pathway. EMBO J. 2006;25(16):3869–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chaudhry HW, Dashoush NH, Tang H, Zhang L, Wang X, Wu EX, et al. Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem. 2004;279(34):35858–66.

    Article  CAS  PubMed  Google Scholar 

  30. Cheng RK, Asai T, Tang H, Dashoush NH, Kara RJ, Costa KD, et al. Cyclin A2 induces cardiac regeneration after myocardial infarction and prevents heart failure. Circ Res. 2007;100(12):1741–8.

    Article  CAS  PubMed  Google Scholar 

  31. Shapiro SD, Ranjan AK, Kawase Y, Cheng RK, Kara RJ, Bhattacharya R, et al. Cyclin A2 induces cardiac regeneration after myocardial infarction through cytokinesis of adult cardiomyocytes. Sci Transl Med. 2014;6(224):224ra27.

    Article  PubMed  CAS  Google Scholar 

  32. Weinberg RA. E2F and cell proliferation: a world turned upside down. Cell. 1996;85(4):457–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kirshenbaum LA, Abdellatif M, Chakraborty S, Schneider MD. Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev Biol. 1996;179(2):402–11.

    Article  CAS  PubMed  Google Scholar 

  34. Liu Y, Kitsis RN. Induction of DNA synthesis and apoptosis in cardiac myocytes by E1A oncoprotein. J Cell Biol. 1996;133(2):325–34.

    Article  CAS  PubMed  Google Scholar 

  35. Ebelt H, Zhang Y, Kampke A, Xu J, Schlitt A, Buerke M, et al. E2F2 expression induces proliferation of terminally differentiated cardiomyocytes in vivo. Cardiovasc Res. 2008;80(2):219–26.

    Article  CAS  PubMed  Google Scholar 

  36. Pasumarthi KB, Field LJ. Cardiomyocyte cell cycle regulation. Circ Res. 2002;90(10):1044–54.

    Article  CAS  PubMed  Google Scholar 

  37. Senyo SE, Lee RT, Kuhn B. Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Res. 2014;13(3 Pt B):532–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Niessen K, Karsan A. Notch signaling in cardiac development. Circ Res. 2008;102(10):1169–81.

    Article  CAS  PubMed  Google Scholar 

  39. Nemir M, Pedrazzini T. Functional role of Notch signaling in the developing and postnatal heart. J Mol Cell Cardiol. 2008;45(4):495–504.

    Article  CAS  PubMed  Google Scholar 

  40. Luxan G, D’Amato G, MacGrogan D, de la Pompa JL. Endocardial Notch signaling in cardiac development and disease. Circ Res. 2016;118(1):e1–e18.

    Article  CAS  PubMed  Google Scholar 

  41. Collesi C, Zentilin L, Sinagra G, Giacca M. Notch1 signaling stimulates proliferation of immature cardiomyocytes. J Cell Biol. 2008;183(1):117–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Felician G, Collesi C, Lusic M, Martinelli V, Ferro MD, Zentilin L, et al. Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ Res. 2014;115(7):636–49.

    Article  CAS  PubMed  Google Scholar 

  43. Bersell K, Arab S, Haring B, Kuhn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 2009;138(2):257–70.

    Article  CAS  PubMed  Google Scholar 

  44. • Polizzotti BD, Ganapathy B, Walsh S, Choudhury S, Ammanamanchi N, Bennett DG, et al. Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Sci Transl Med. 2015;7(281):281ra45. Application of recombinant NRG1 was sufficient to induce proliferation of cardiomyocyte in neonatal mice and infant myocardium.

    Article  PubMed  CAS  Google Scholar 

  45. Ganapathy B, Nandhagopal N, Polizzotti BD, Bennett D, Asan A, Wu Y, et al. Neuregulin-1 administration protocols sufficient for stimulating cardiac regeneration in young mice do not induce somatic, organ, or neoplastic growth. PLoS One. 2016;11(5), e0155456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wadugu B, Kuhn B. The role of neuregulin/ErbB2/ErbB4 signaling in the heart with special focus on effects on cardiomyocyte proliferation. Am J Physiol Heart Circ Physiol. 2012;302(11):H2139–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Parodi EM, Kuhn B. Signalling between microvascular endothelium and cardiomyocytes through neuregulin. Cardiovasc Res. 2014;102(2):194–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006;7(7):505–16.

    Article  CAS  PubMed  Google Scholar 

  49. Telli ML, Hunt SA, Carlson RW, Guardino AE. Trastuzumab-related cardiotoxicity: calling into question the concept of reversibility. J Clin Oncol. 2007;25(23):3525–33.

    Article  CAS  PubMed  Google Scholar 

  50. Lee KF, Simon H, Chen H, Bates B, Hung MC, Hauser C. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature. 1995;378(6555):394–8.

    Article  CAS  PubMed  Google Scholar 

  51. Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R, et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature. 1995;378(6555):390–4.

    Article  CAS  PubMed  Google Scholar 

  52. Meyer D, Birchmeier C. Multiple essential functions of neuregulin in development. Nature. 1995;378(6555):386–90.

    Article  CAS  PubMed  Google Scholar 

  53. Tidcombe H, Jackson-Fisher A, Mathers K, Stern DF, Gassmann M, Golding JP. Neural and mammary gland defects in ErbB4 knockout mice genetically rescued from embryonic lethality. Proc Natl Acad Sci U S A. 2003;100(14):8281–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. • D’Uva G, Aharonov A, Lauriola M, Kain D, Yahalom-Ronen Y, Carvalho S, et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol. 2015;17(5):627–38. NRG1 co-receptor ErbB2 enhances cardiomyocyte proliferation stimulated with recombinant neuregulin 1. Constitutively active ErbB2 is sufficient to reactivate proliferation in adult cardiomyocytes.

    Article  PubMed  CAS  Google Scholar 

  55. Belmonte F, Das S, Sysa-Shah P, Sivakumaran V, Stanley B, Guo X, et al. ErbB2 overexpression upregulates antioxidant enzymes, reduces basal levels of reactive oxygen species, and protects against doxorubicin cardiotoxicity. Am J Physiol Heart Circ Physiol. 2015;309(8):H1271–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB, et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 2005;19(10):1175–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gemberling M, Karra R, Dickson AL, Poss KD. Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. Elife. 2015;4, e05871.

    Article  PubMed Central  CAS  Google Scholar 

  58. Gemberling M, Bailey TJ, Hyde DR, Poss KD. The zebrafish as a model for complex tissue regeneration. Trends Genet. 2013;29(11):611–20.

    Article  CAS  PubMed  Google Scholar 

  59. Gao R, Zhang J, Cheng L, Wu X, Dong W, Yang X, et al. A phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of th efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J Am Coll Cardiol. 2010;55(18):1907–14.

    Article  CAS  PubMed  Google Scholar 

  60. Jabbour A, Gao L, Kwan J, Watson A, Sun L, Qiu MR, et al. A recombinant human neuregulin-1 peptide improves preservation of the rodent heart after prolonged hypothermic storage. Transplantation. 2011;91(9):961–7.

    Article  CAS  PubMed  Google Scholar 

  61. Lockhart ST, Turrigiano GG, Birren SJ. Nerve growth factor modulates synaptic transmission between sympathetic neurons and cardiac myocytes. J Neurosci. 1997;17(24):9573–82.

    CAS  PubMed  Google Scholar 

  62. Mahmoud AI, O’Meara CC, Gemberling M, Zhao L, Bryant DM, Zheng R, et al. Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev Cell. 2015;34(4):387–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Matsukawa R, Hirooka Y, Ito K, Honda N, Sunagawa K. Central neuregulin-1/ErbB signaling modulates cardiac function via sympathetic activity in pressure overload-induced heart failure. J Hypertens. 2014;32(4):817–25.

    Article  CAS  PubMed  Google Scholar 

  64. Kubin T, Poling J, Kostin S, Gajawada P, Hein S, Rees W, et al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell. 2011;9(5):420–32.

    Article  CAS  PubMed  Google Scholar 

  65. Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, et al. Macrophages are required for neonatal heart regeneration. J Clin Invest. 2014;124(3):1382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci U S A. 2014;111(45):16029–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wei K, Serpooshan V, Hurtado C, Diez-Cunado M, Zhao M, Maruyama S, et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015;525(7570):479–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li P, Cavallero S, Gu Y, Chen TH, Hughes J, Hassan AB, et al. IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development. 2011;138(9):1795–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shen H, Cavallero S, Estrada KD, Sandovici I, Kumar SR, Makita T, et al. Extracardiac control of embryonic cardiomyocyte proliferation and ventricular wall expansion. Cardiovasc Res. 2015;105(3):271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pentassuglia L, Sawyer DB. The role of neuregulin-1beta/ErbB signaling in the heart. Exp Cell Res. 2009;315(4):627–37.

    Article  CAS  PubMed  Google Scholar 

  71. Gu A, Jie Y, Sun L, Zhao SEM, You Q. RhNRG-1beta protects the myocardium against irradiation-induced damage via the ErbB2-ERK-SIRT1 signaling pathway. PLoS One. 2015;10(9), e0137337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Arias-Romero LE, Villamar-Cruz O, Huang M, Hoeflich KP, Chernoff J. Pak1 kinase links ErbB2 to beta-catenin in transformation of breast epithelial cells. Cancer Res. 2013;73(12):3671–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lopez-Haber C, Barrio-Real L, Casado-Medrano V, Kazanietz MG. Heregulin/ErbB3 signaling enhances CXCR4-driven Rac1 activation and breast cancer cell motility via hypoxia-inducible factor 1alpha. Mol Cell Biol. 2016;36(15):2011–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ebi H, Costa C, Faber AC, Nishtala M, Kotani H, Juric D, et al. PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1. Proc Natl Acad Sci U S A. 2013;110(52):21124–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Peng X, He Q, Li G, Ma J, Zhong TP. Rac1-PAK2 pathway is essential for zebrafish heart regeneration. Biochem Biophys Res Commun. 2016;472(4):637–42.

    Article  CAS  PubMed  Google Scholar 

  76. Eriksson M, Leppa S. Mitogen-activated protein kinases and activator protein 1 are required for proliferation and cardiomyocyte differentiation of P19 embryonal carcinoma cells. J Biol Chem. 2002;277(18):15992–6001.

    Article  CAS  PubMed  Google Scholar 

  77. Liang Q, Molkentin JD. Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models. J Mol Cell Cardiol. 2003;35(12):1385–94.

    Article  CAS  PubMed  Google Scholar 

  78. Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19(4):491–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xin M, Olson EN, Bassel-Duby R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol. 2013;14(8):529–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A. 2012;109(7):2394–9.

    Article  Google Scholar 

  81. Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332(6028):458–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, et al. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med. 2015;7(279):279ra38.

    Article  PubMed  CAS  Google Scholar 

  83. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 2009;459(7243):108–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010;107(50):21931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell. 2012;151(1):206–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Paige SL, Thomas S, Stoick-Cooper CL, Wang H, Maves L, Sandstrom R, et al. A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell. 2012;151(1):221–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature. 2010;466(7302):62–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Anand P, Brown JD, Lin CY, Qi J, Zhang R, Artero PC, et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell. 2013;154(3):569–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Abbey D, Seshagiri PB. Aza-induced cardiomyocyte differentiation of P19 EC-cells by epigenetic co-regulation and ERK signaling. Gene. 2013;526(2):364–73.

    Article  CAS  PubMed  Google Scholar 

  90. •• Kang J, Hu J, Karra R, Dickson AL, Tornini VA, Nachtrab G, et al. Modulation of tissue repair by regeneration enhancer elements. Nature. 2016;532(7598):201–6. Identified a common regeneration enhancer mechanism for the regulation of genes in regenerating tissue. The mechanism has the potential to active clusters of genes, which will likely be necessary for meaningful proliferation.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  CAS  PubMed  Google Scholar 

  92. Fang Y, Gupta V, Karra R, Holdway JE, Kikuchi K, Poss KD. Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration. Proc Natl Acad Sci U S A. 2013;110(33):13416–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279(5349):349–52.

    Article  CAS  PubMed  Google Scholar 

  94. Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A, et al. Inhibition of telomerase limits the growth of human cancer cells. Nat Med. 1999;5(10):1164–70.

    Article  CAS  PubMed  Google Scholar 

  95. Oh H, Taffet GE, Youker KA, Entman ML, Overbeek PA, Michael LH, et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc Natl Acad Sci U S A. 2001;98(18):10308–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Di Stefano V, Giacca M, Capogrossi MC, Crescenzi M, Martelli F. Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle. J Biol Chem. 2011;286(10):8644–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157(3):565–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kimura W, Xiao F, Canseco DC, Muralidhar S, Thet S, Zhang HM, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015;523(7559):226–30.

    Article  CAS  PubMed  Google Scholar 

  99. Lipshultz SE, Lipsitz SR, Sallan SE, Simbre 2nd VC, Shaikh SL, Mone SM, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20(23):4517–22.

    Article  CAS  PubMed  Google Scholar 

  100. van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2005;1, CD003917.

    Google Scholar 

  101. Myers C. The role of iron in doxorubicin-induced cardiomyopathy. Semin Oncol. 1998;25(4 Suppl 10):10–4.

    CAS  PubMed  Google Scholar 

  102. Lebrecht D, Geist A, Ketelsen UP, Haberstroh J, Setzer B, Walker UA. Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. Br J Pharmacol. 2007;151(6):771–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, et al. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67(18):8839–46.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18(11):1639–42.

    Article  PubMed  CAS  Google Scholar 

  105. Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271–82.

    CAS  PubMed  Google Scholar 

  106. Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A. 2008;105(6):2111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rao PK, Toyama Y, Chiang HR, Gupta S, Bauer M, Medvid R, et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res. 2009;105(6):585–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Matkovich SJ, Van Booven DJ, Youker KA, Torre-Amione G, Diwan A, Eschenbacher WH, et al. Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation. 2009;119(9):1263–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, et al. Altered microRNA expression in human heart disease. Physiol Genomics. 2007;31(3):367–73.

    Article  CAS  PubMed  Google Scholar 

  110. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980–4.

    Article  CAS  PubMed  Google Scholar 

  111. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492(7429):376–81.

    Article  CAS  PubMed  Google Scholar 

  112. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22(23):3242–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436(7048):214–20.

    Article  CAS  PubMed  Google Scholar 

  114. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129(2):303–17.

    Article  CAS  PubMed  Google Scholar 

  115. Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res. 2011;109(6):670–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liang D, Li J, Wu Y, Zhen L, Li C, Qi M, et al. miRNA-204 drives cardiomyocyte proliferation via targeting Jarid2. Int J Cardiol. 2015;201:38–48.

    Article  PubMed  Google Scholar 

  117. Andersen DC, Ganesalingam S, Jensen CH, Sheikh SP. Do neonatal mouse hearts regenerate following heart apex resection? Stem cell reports. 2014;2(4):406–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sadek HA, Martin JF, Takeuchi JK, Leor J, Nie Y, Giacca M, et al. Multi-investigator letter on reproducibility of neonatal heart regeneration following apical resection. Stem Cell Reports. 2014;3(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Darehzereshki A, Rubin N, Gamba L, Kim J, Fraser J, Huang Y, et al. Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Dev Biol. 2015;399(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  120. Bryant DM, O’Meara CC, Ho NN, Gannon J, Cai L, Lee RT. A systematic analysis of neonatal mouse heart regeneration after apical resection. J Mol Cell Cardiol. 2015;79:315–8.

    Article  CAS  PubMed  Google Scholar 

  121. Mahmoud AI, Porrello ER, Kimura W, Olson EN, Sadek HA. Surgical models for cardiac regeneration in neonatal mice. Nat Protoc. 2014;9(2):305–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Polizzotti BD, Ganapathy B, Haubner BJ, Penninger JM, Kuhn B. A cryoinjury model in neonatal mice for cardiac translational and regeneration research. Nat Protoc. 2016;11(3):542–52.

    Article  CAS  PubMed  Google Scholar 

  123. Haubner BJ, Schuetz T, Penninger JM. A reproducible protocol for neonatal ischemic injury and cardiac regeneration in neonatal mice. Basic Res Cardiol. 2016;111(6):64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Richard King Mellon Foundation Institute for Pediatric Research (Children’s Hospital of Pittsburgh of UPMC), by a Transatlantic Network of Excellence grant by Fondation Leducq (15CVD03), Children’s Cardiomyopathy Foundation, and NIH grants R01HL106302 and U01MH098953 (to BK). We apologize for the researchers whose publications we were not able to discuss and cite due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Kühn.

Ethics declarations

Conflict of Interest

Jessie Wettig Yester and Bernhard Kühn declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Regenerative Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yester, J.W., Kühn, B. Mechanisms of Cardiomyocyte Proliferation and Differentiation in Development and Regeneration. Curr Cardiol Rep 19, 13 (2017). https://doi.org/10.1007/s11886-017-0826-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0826-1

Keywords

Navigation