Skip to main content

Advertisement

Log in

Gender Disparities Across the Spectrum of Advanced Cardiac Therapies: Real or Imagined?

  • Heart Failure (MR Mehra and E Joyce, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Cardiovascular disease has been responsible for more deaths in women than in men each year since 1985. This review discusses federal laws that have influenced the inclusion of women in research and reporting sex-specific differences, then addresses gender differences and gender disparities in four areas of clinical cardiovascular medicine: coronary heart disease, valvular heart disease, electrophysiology, and heart failure. The prevalence of disease in women is highlighted, the clinical characteristics of women at the time of referral for advanced therapies are reviewed, and the clinical outcomes of women are discussed. With the emergence of new technology such as smaller devices and less invasive procedures, more women are being referred for advanced therapies. However, a gap in awareness and diagnosis remains, contributing to later referrals for women. Women who do undergo advanced therapies often have more comorbidities and worse outcomes than men. A call is made to increase awareness, educate healthcare providers, and report more sex-specific data to resolve these gender disparities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. U.S. Food and Drug Administration. General Considerations for the Clinical Evaluation of Drugs. Rockville: U.S. Department of Health, Education, and Welfare. Public Health Service, FDA; 1977.

    Google Scholar 

  2. U.S. Department of Health and Human Services. Women’s health. Report of the Public Health Service Task Force on Women’s Health Issues. Public Health Rep. 1985;100:73–106.

    Google Scholar 

  3. Institute of Medicine. Exploring the Biological Contributions to Human Health: Does Sex Matter? Washington, DC: National Academy Press; 2001.

    Google Scholar 

  4. Institute of Medicine. Women’s Health Research: Progress, Pitfalls, and Promise. Washington, DC: National Academy Press; 2010.

    Google Scholar 

  5. Whitehead M. The Concepts and Principles of Equity in Health. Copenhagen: World Health Organization; 1990.

    Google Scholar 

  6. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–360.

    Article  PubMed  Google Scholar 

  7. Thom TJ, Kannel WB, Silbershatz H, et al. Cardiovascular diseases in the United States and prevention approaches. In: Fuster V, Alexander RW, O’Rourke RA, Roberts R, King III SB, Wellens JHH, editors. Hurst’s The Heart. 10th ed. New York: McGraw-Hill; 2001. p. 3–15.

    Google Scholar 

  8. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322.

    Article  PubMed  Google Scholar 

  9. Mosca L, Appel LJ, Benjamin EJ, et al. Evidence-based guidelines for cardiovascular disease prevention in women. J Am Coll Cardiol. 2004;43:900–21.

    Article  PubMed  Google Scholar 

  10. Mosca L, Benjamin EJ, Berra K, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update: a guideline from the American Heart Association. J Am Coll Cardiol. 2011;57:1404–23.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mosca L, Linfante AH, Benjamin EJ, et al. National study of physician awareness and adherence to cardiovascular disease prevention guidelines. Circulation. 2005;111:499–510.

    Article  PubMed  Google Scholar 

  12. Shah T, Palaskas N, Ahmed A. An update on gender disparities in coronary heart disease care. Curr Atheroscler Rep. 2016;18:28.

    Article  CAS  PubMed  Google Scholar 

  13. McSweeney JC, Cody M, O’Sullivan P, et al. Women’s early warning symptoms of acute myocardial infarction. Circulation. 2003;108:2619–23.

    Article  PubMed  Google Scholar 

  14. Mosca L, Hammond G, Mochari-Greenberger H, et al. Fifteen-year trends in awareness of heart disease in women: results of a 2012 American Heart Association national survey. Circulation. 2013;127:1254–63. e1-29. This study recognizes a persistent gap in cardiovascular disease awareness among racial/ethnic minorities.

  15. Chandra NC, Ziegelstein RC, Rogers WJ, et al. Observations of the treatment of women in the United States with myocardial infarction: a report from the National Registry of Myocardial Infarction-I. Arch Intern Med. 1998;158:981–8.

    Article  CAS  PubMed  Google Scholar 

  16. Boersma E, Primary Coronary Angioplasty vs. Thrombolysis G. Does time matter? A pooled analysis of randomized clinical trials comparing primary percutaneous coronary intervention and in-hospital fibrinolysis in acute myocardial infarction patients. Eur Heart J. 2006;27:779–88.

    Article  PubMed  Google Scholar 

  17. Tamis-Holland JE, Palazzo A, Stebbins AL, et al. Benefits of direct angioplasty for women and men with acute myocardial infarction: results of the Global Use of Strategies to Open Occluded Arteries in Acute Coronary Syndromes Angioplasty (GUSTO II-B) Angioplasty Substudy. Am Heart J. 2004;147:133–9.

    Article  PubMed  Google Scholar 

  18. Mehta LS, Beckie TM, DeVon HA, et al. Acute myocardial infarction in women: a scientific statement from the American Heart Association. Circulation. 2016;133:916–47. This statement provides a comprehensive review of the current evidence regarding clinical presentation, pathophysiology, treatment, and outcomes for women who present with acute myocardial infarction.

    Article  CAS  PubMed  Google Scholar 

  19. Khera S, Kolte D, Gupta T, et al. Temporal trends and sex differences in revascularization and outcomes of ST-segment elevation myocardial infarction in younger adults in the United States. J Am Coll Cardiol. 2015;66:1961–72.

    Article  PubMed  Google Scholar 

  20. Pancholy SB, Shantha GP, Patel T, et al. Sex differences in short-term and long-term all-cause mortality among patients with ST-segment elevation myocardial infarction treated by primary percutaneous intervention: a meta-analysis. JAMA Intern Med. 2014;174:1822–30.

    Article  PubMed  Google Scholar 

  21. Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;130:e344–426.

    Article  PubMed  Google Scholar 

  22. Blomkalns AL, Chen AY, Hochman JS, et al. Gender disparities in the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes: large-scale observations from the CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the American College of Cardiology/American Heart Association Guidelines) National Quality Improvement Initiative. J Am Coll Cardiol. 2005;45:832–7.

    Article  PubMed  Google Scholar 

  23. Kim C, Redberg RF, Pavlic T, et al. A systematic review of gender differences in mortality after coronary artery bypass graft surgery and percutaneous coronary interventions. Clin Cardiol. 2007;30:491–5.

    Article  PubMed  Google Scholar 

  24. Alam M, Bandeali SJ, Kayani WT, et al. Comparison by meta-analysis of mortality after isolated coronary artery bypass grafting in women versus men. Am J Cardiol. 2013;112:309–17.

    Article  PubMed  Google Scholar 

  25. Lehmkuhl E, Kendel F, Gelbrich G, et al. Gender-specific predictors of early mortality after coronary artery bypass graft surgery. Clin Res Cardiol. 2012;101:745–51.

    Article  CAS  PubMed  Google Scholar 

  26. Emmert MY, Salzberg SP, Seifert B, et al. Despite modern off-pump coronary artery bypass grafting women fare worse than men. Interact Cardiovasc Thorac Surg. 2010;10:737–41.

    Article  PubMed  Google Scholar 

  27. Nkomo VT, Gardin JM, Skelton TN, et al. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368:1005–11.

    Article  PubMed  Google Scholar 

  28. Nowicki ER, Birkmeyer NJ, Weintraub RW, et al. Multivariable prediction of in-hospital mortality associated with aortic and mitral valve surgery in Northern New England. Ann Thorac Surg. 2004;77:1966–77.

    Article  PubMed  Google Scholar 

  29. Rankin JS, Hammill BG, Ferguson Jr TB, et al. Determinants of operative mortality in valvular heart surgery. J Thorac Cardiovasc Surg. 2006;131:547–57.

    Article  PubMed  Google Scholar 

  30. Elhmidi Y, Piazza N, Mazzitelli D, et al. Sex-related differences in 2197 patients undergoing isolated surgical aortic valve replacement. J Card Surg. 2014;29:772–8.

    Article  PubMed  Google Scholar 

  31. Kulik A, Lam BK, Rubens FD, et al. Gender differences in the long-term outcomes after valve replacement surgery. Heart. 2009;95:318–26.

    Article  CAS  PubMed  Google Scholar 

  32. Avierinos JF, Inamo J, Grigioni F, et al. Sex differences in morphology and outcomes of mitral valve prolapse. Ann Intern Med. 2008;149:787–95.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mokhles MM, Siregar S, Versteegh MI, et al. Male–female differences and survival in patients undergoing isolated mitral valve surgery: a nationwide cohort study in the Netherlands. Eur J Cardiothorac Surg. 2016​;50:482–7​.

  34. Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–607.

    Article  CAS  PubMed  Google Scholar 

  35. Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364:2187–98.

    Article  CAS  PubMed  Google Scholar 

  36. Williams M, Kodali SK, Hahn RT, et al. Sex-related differences in outcomes after transcatheter or surgical aortic valve replacement in patients with severe aortic stenosis: insights from the PARTNER Trial (Placement of Aortic Transcatheter Valve). J Am Coll Cardiol. 2014;63:1522–8.

    Article  PubMed  Google Scholar 

  37. O’Connor SA, Morice MC, Gilard M, et al. Revisiting sex equality with transcatheter aortic valve replacement outcomes: a collaborative, patient-level meta-analysis of 11,310 patients. J Am Coll Cardiol. 2015;66:221–8. This meta-analysis highlights that female sex is an independent predictor of late survival after transcatheter aortic valve replacement.

    Article  PubMed  Google Scholar 

  38. Conradi L, Treede H, Rudolph V, et al. Surgical or percutaneous mitral valve repair for secondary mitral regurgitation: comparison of patient characteristics and clinical outcomes. Eur J Cardiothorac Surg. 2013;44:490–6. discussion 6.

    Article  PubMed  Google Scholar 

  39. Attizzani GF, Ohno Y, Capodanno D, et al. Gender-related clinical and echocardiographic outcomes at 30-day and 12-month follow up after MitraClip implantation in the GRASP registry. Catheter Cardiovasc Interv. 2015;85:889–97.

    Article  PubMed  Google Scholar 

  40. Tigges E, Kalbacher D, Thomas C, et al. Transcatheter mitral valve repair in surgical high-risk patients: gender-specific acute and long-term outcomes. Biomed Res Int. 2016;2016:3934842.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bazett HC. An analysis of the time-relations of electrocardiograms. Heart. 1920;7:353–70.

    Google Scholar 

  42. Merri M, Benhorin J, Alberti M, et al. Electrocardiographic quantitation of ventricular repolarization. Circulation. 1989;80:1301–8.

    Article  CAS  PubMed  Google Scholar 

  43. Okin PM, Roman MJ, Devereux RB, et al. Gender differences and the electrocardiogram in left ventricular hypertrophy. Hypertension. 1995;25:242–9.

    Article  CAS  PubMed  Google Scholar 

  44. Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA. 2001;285:2370–5.

    Article  CAS  PubMed  Google Scholar 

  45. Feinberg WM, Blackshear JL, Laupacis A, et al. Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications. Arch Intern Med. 1995;155:469–73.

    Article  CAS  PubMed  Google Scholar 

  46. Bhave PD, Lu X, Girotra S, et al. Race- and sex-related differences in care for patients newly diagnosed with atrial fibrillation. Heart Rhythm. 2015;12:1406–12.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dagres N, Nieuwlaat R, Vardas PE, et al. Gender-related differences in presentation, treatment, and outcome of patients with atrial fibrillation in Europe: a report from the Euro Heart Survey on Atrial Fibrillation. J Am Coll Cardiol. 2007;49:572–7.

    Article  PubMed  Google Scholar 

  48. Fang MC, Singer DE, Chang Y, et al. Gender differences in the risk of ischemic stroke and peripheral embolism in atrial fibrillation: the AnTicoagulation and Risk factors In Atrial fibrillation (ATRIA) study. Circulation. 2005;112:1687–91.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hart RG, Pearce LA, McBride R, et al. Factors associated with ischemic stroke during aspirin therapy in atrial fibrillation: analysis of 2012 participants in the SPAF I-III clinical trials. The Stroke Prevention in Atrial Fibrillation (SPAF) Investigators. Stroke. 1999;30:1223–9.

    Article  CAS  PubMed  Google Scholar 

  50. Lip GY, Nieuwlaat R, Pisters R, et al. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on atrial fibrillation. Chest. 2010;137:263–72.

    Article  PubMed  Google Scholar 

  51. Forleo GB, Tondo C, De Luca L, et al. Gender-related differences in catheter ablation of atrial fibrillation. Europace. 2007;9:613–20.

    Article  PubMed  Google Scholar 

  52. Granada J, Uribe W, Chyou PH, et al. Incidence and predictors of atrial flutter in the general population. J Am Coll Cardiol. 2000;36:2242–6.

    Article  CAS  PubMed  Google Scholar 

  53. Brembilla-Perrot B, Huttin O, Manenti V, et al. Sex-related differences in peri- and post-ablation clinical data for patients with atrial flutter. Int J Cardiol. 2013;168:1951–4.

    Article  CAS  PubMed  Google Scholar 

  54. Baman TS, Jongnarangsin K, Chugh A, et al. Prevalence and predictors of complications of radiofrequency catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2011;22:626–31.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hoyt H, Bhonsale A, Chilukuri K, et al. Complications arising from catheter ablation of atrial fibrillation: temporal trends and predictors. Heart Rhythm. 2011;8:1869–74.

    Article  PubMed  Google Scholar 

  56. Shah RU, Freeman JV, Shilane D, et al. Procedural complications, rehospitalizations, and repeat procedures after catheter ablation for atrial fibrillation. J Am Coll Cardiol. 2012;59:143–9.

    Article  PubMed  Google Scholar 

  57. Santangeli P, di Biase L, Pelargonio G, et al. Outcome of invasive electrophysiological procedures and gender: are males and females the same? J Cardiovasc Electrophysiol. 2011;22:605–12.

    Article  PubMed  Google Scholar 

  58. Gillum RF. Sudden coronary death in the United States: 1980–1985. Circulation. 1989;79:756–65.

    Article  CAS  PubMed  Google Scholar 

  59. Kannel WB, Wilson PW, D’Agostino RB, et al. Sudden coronary death in women. Am Heart J. 1998;136:205–12.

    Article  CAS  PubMed  Google Scholar 

  60. Wigginton JG, Pepe PE, Bedolla JP, et al. Sex-related differences in the presentation and outcome of out-of-hospital cardiopulmonary arrest: a multiyear, prospective, population-based study. Crit Care Med. 2002;30:S131–6.

    Article  PubMed  Google Scholar 

  61. Tanaka Y, Tada H, Ito S, et al. Gender and age differences in candidates for radiofrequency catheter ablation of idiopathic ventricular arrhythmias. Circ J. 2011;75:1585–91.

    Article  PubMed  Google Scholar 

  62. Brunner M, Olschewski M, Geibel A, et al. Long-term survival after pacemaker implantation. Prognostic importance of gender and baseline patient characteristics. Eur Heart J. 2004;25:88–95.

    Article  PubMed  Google Scholar 

  63. El-Chami MF, Hanna IR, Bush H, et al. Impact of race and gender on cardiac device implantations. Heart Rhythm. 2007;4:1420–6.

    Article  PubMed  Google Scholar 

  64. Lamas GA, Pashos CL, Normand SL, et al. Permanent pacemaker selection and subsequent survival in elderly Medicare pacemaker recipients. Circulation. 1995;91:1063–9.

    Article  CAS  PubMed  Google Scholar 

  65. Nowak B, Misselwitz B, Erdogan A, et al. Do gender differences exist in pacemaker implantation?—results of an obligatory external quality control program. Europace. 2010;12:210–5.

    Article  PubMed  Google Scholar 

  66. Schuppel R, Buchele G, Batz L, et al. Sex differences in selection of pacemakers: retrospective observational study. BMJ. 1998;316:1492–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sweeney MO, Bank AJ, Nsah E, et al. Minimizing ventricular pacing to reduce atrial fibrillation in sinus-node disease. N Engl J Med. 2007;357:1000–8.

    Article  CAS  PubMed  Google Scholar 

  68. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. The Antiarrhythmics versus Implantable Defibrillators (AVID) Investigators. N Engl J Med. 1997;337:1576–83.

  69. Curtis AB. Are women worldwide under-treated with regard to cardiac resynchronization and sudden death prevention? J Interv Card Electrophysiol. 2006;17:169–75.

    Article  PubMed  Google Scholar 

  70. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352:225–37.

    Article  CAS  PubMed  Google Scholar 

  71. Zareba W, Moss AJ, Jackson Hall W, et al. Clinical course and implantable cardioverter defibrillator therapy in postinfarction women with severe left ventricular dysfunction. J Cardiovasc Electrophysiol. 2005;16:1265–70.

    Article  PubMed  Google Scholar 

  72. Hernandez AF, Fonarow GC, Liang L, et al. Sex and racial differences in the use of implantable cardioverter-defibrillators among patients hospitalized with heart failure. JAMA. 2007;298:1525–32.

    Article  CAS  PubMed  Google Scholar 

  73. Santangeli P, Pelargonio G, Dello Russo A, et al. Gender differences in clinical outcome and primary prevention defibrillator benefit in patients with severe left ventricular dysfunction: a systematic review and meta-analysis. Heart Rhythm. 2010;7:876–82.

    Article  PubMed  Google Scholar 

  74. Birks EJ, McGee Jr EC, Aaronson KD, et al. An examination of survival by sex and race in the HeartWare Ventricular Assist Device for the Treatment of Advanced Heart Failure (ADVANCE) Bridge to Transplant (BTT) and continued access protocol trials. J Heart Lung Transplant. 2015;34:815–24. This study demonstrates equivalent benefit for women and men who receive the HeartWare Ventricular Assist Device as BTT.

    Article  PubMed  Google Scholar 

  75. Bogaev RC, Pamboukian SV, Moore SA, et al. Comparison of outcomes in women versus men using a continuous-flow left ventricular assist device as a bridge to transplantation. J Heart Lung Transplant. 2011;30:515–22.

    Article  PubMed  Google Scholar 

  76. Copeland JG, Smith RG, Arabia FA, et al. Cardiac replacement with a total artificial heart as a bridge to transplantation. N Engl J Med. 2004;351:859–67.

    Article  CAS  PubMed  Google Scholar 

  77. Frazier OH, Dowling RD, Gray Jr LA, et al. The total artificial heart: where we stand. Cardiology. 2004;101:117–21.

    Article  CAS  PubMed  Google Scholar 

  78. Frazier OH, Rose EA, Macmanus Q, et al. Multicenter clinical evaluation of the HeartMate 1000 IP left ventricular assist device. Ann Thorac Surg. 1992;53:1080–90.

    Article  CAS  PubMed  Google Scholar 

  79. Frazier OH, Rose EA, Oz MC, et al. Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J Thorac Cardiovasc Surg. 2001;122:1186–95.

    Article  CAS  PubMed  Google Scholar 

  80. Rogers JG, Butler J, Lansman SL, et al. Chronic mechanical circulatory support for inotrope-dependent heart failure patients who are not transplant candidates: results of the INTrEPID Trial. J Am Coll Cardiol. 2007;50:741–7.

    Article  PubMed  Google Scholar 

  81. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

    Article  CAS  PubMed  Google Scholar 

  82. Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241–51.

    Article  CAS  PubMed  Google Scholar 

  83. Woo GW, Petersen-Stejskal S, Johnson JW, et al. Ventricular reverse remodeling and 6-month outcomes in patients receiving cardiac resynchronization therapy: analysis of the MIRACLE study. J Interv Card Electrophysiol. 2005;12:107–13.

    Article  PubMed  Google Scholar 

  84. Arshad A, Moss AJ, Foster E, et al. Cardiac resynchronization therapy is more effective in women than in men: the MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy) trial. J Am Coll Cardiol. 2011;57:813–20.

    Article  PubMed  Google Scholar 

  85. Schuchert A, Muto C, Maounis T, et al. Gender-related safety and efficacy of cardiac resynchronization therapy. Clin Cardiol. 2013;36:683–90.

    Article  PubMed  Google Scholar 

  86. Zabarovskaja S, Gadler F, Braunschweig F, et al. Women have better long-term prognosis than men after cardiac resynchronization therapy. Europace. 2012;14:1148–55.

    Article  PubMed  Google Scholar 

  87. Varma N, Manne M, Nguyen D, et al. Probability and magnitude of response to cardiac resynchronization therapy according to QRS duration and gender in nonischemic cardiomyopathy and LBBB. Heart Rhythm. 2014;11:1139–47. This study highlights the favorable CRT response for women and not men with nonischemic cardiomyopathy and LBBB who have a QRS duration < 150 ms.

    Article  PubMed  Google Scholar 

  88. Jamerson D, McNitt S, Polonsky S, et al. Early procedure-related adverse events by gender in MADIT-CRT. J Cardiovasc Electrophysiol. 2014;25:985–9.

    Article  PubMed  Google Scholar 

  89. Aaronson KD, Slaughter MS, Miller LW, et al. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation. 2012;125:3191–200.

    Article  PubMed  Google Scholar 

  90. Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.

    Article  CAS  PubMed  Google Scholar 

  91. Strueber M, Larbalestier R, Jansz P, et al. Results of the post-market Registry to Evaluate the HeartWare Left Ventricular Assist System (ReVOLVE). J Heart Lung Transplant. 2014;33:486–91.

    Article  PubMed  Google Scholar 

  92. Morgan JA, Weinberg AD, Hollingsworth KW, et al. Effect of gender on bridging to transplantation and posttransplantation survival in patients with left ventricular assist devices. J Thorac Cardiovasc Surg. 2004;127:1193–5.

    Article  PubMed  Google Scholar 

  93. Hsich EM, Naftel DC, Myers SL, et al. Should women receive left ventricular assist device support? Findings from INTERMACS. Circ Heart Fail. 2012;5:234–40.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Potapov E, Schweiger M, Lehmkuhl E, et al. Gender differences during mechanical circulatory support. ASAIO J. 2012;58:320–5.

    Article  PubMed  Google Scholar 

  95. Tsiouris A, Morgan JA, Nemeh HW, et al. Sex-specific outcomes in patients receiving continuous-flow left ventricular devices as a bridge to transplantation or destination therapy. ASAIO J. 2014;60:199–206.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Weymann A, Patil NP, Sabashnikov A, et al. Gender differences in continuous-flow left ventricular assist device therapy as a bridge to transplantation: a risk-adjusted comparison using a propensity score-matching analysis. Artif Organs. 2015;39:212–9.

    Article  CAS  PubMed  Google Scholar 

  97. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147–239.

    Article  PubMed  Google Scholar 

  98. Stehlik J, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: 29th official adult heart transplant report—2012. J Heart Lung Transplant. 2012;31:1052–64.

    Article  PubMed  Google Scholar 

  99. Hsich EM, Starling RC, Blackstone EH, et al. Does the UNOS heart transplant allocation system favor men over women? JACC Heart Fail. 2014;2:347–55.

    Article  PubMed  Google Scholar 

  100. John R, Pagani FD, Naka Y, et al. Post-cardiac transplant survival after support with a continuous-flow left ventricular assist device: impact of duration of left ventricular assist device support and other variables. J Thorac Cardiovasc Surg. 2010;140:174–81.

    Article  PubMed  Google Scholar 

  101. Kamdar F, John R, Eckman P, et al. Postcardiac transplant survival in the current era in patients receiving continuous-flow left ventricular assist devices. J Thorac Cardiovasc Surg. 2013;145:575–81.

    Article  PubMed  Google Scholar 

  102. Aaronson KD, Schwartz JS, Goin JE, et al. Sex differences in patient acceptance of cardiac transplant candidacy. Circulation. 1995;91:2753–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta C. Bogaev.

Ethics declarations

Conflict of Interest

Roberta C. Bogaev declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogaev, R.C. Gender Disparities Across the Spectrum of Advanced Cardiac Therapies: Real or Imagined?. Curr Cardiol Rep 18, 108 (2016). https://doi.org/10.1007/s11886-016-0783-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-016-0783-0

Keywords

Navigation