Skip to main content

Advertisement

Log in

Echocardiographic Assessment of Cardiotoxic Effects of Cancer Therapy

  • Echocardiography (JM Gardin, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Patients with cancer can present with difficult management issues, as the medicine can sometimes cause sequelae destructive to healthy tissue. As this population lives longer, cardiotoxic effects are beginning to emerge, but the early recognition of this signal can prove difficult, with too late a recognition leading to lifelong cardiac impairment and dysfunction. Cardio-oncology can bridge this difficulty, and echocardiography and its newer imaging abilities are proving efficacious in this population. This article will address common sequelae of cardiotoxic treatment regimens and offer recommendations for echocardiographic surveillance. We recommend echocardiography, preferably three-dimensional and strain imaging, to monitor for cardiotoxic myocardial effects before, during, and after chemotherapy with cardiotoxic drug regimens, particularly anthracycline derivatives. A reduction in left ventricular (LV) global longitudinal strain in all patients, or reduction in LV global circumferential strain or global radial strain in patients at intermediate to high risk for cardiotoxicity, despite normal LV ejection fraction warrants a clinical assessment on the benefits of continuing cardiotoxic chemotherapeutic agents. Lifelong surveillance using echocardiography for cardiotoxicity and radiation-related valvular, pericardial, and coronary artery disease is prudent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Agboola SO, Ju W, Elfiky A, et al. The effect of technology-based interventions on pain, depression, and quality of life in patients with cancer: a systematic review of randomized controlled trials. J Med Internet Res. 2015;17(3), e65.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Evangelista A, Galuppo V, Mendez J, et al. Hand-held cardiac ultrasound screening performed by family doctors with remote expert support interpretation. Heart. 2016;102(5):376–82.

    Article  CAS  PubMed  Google Scholar 

  3. Lal H, Kolaja KL, Force T. Cancer genetics and the cardiotoxicity of the therapeutics. J Am Coll Cardiol. 2013;61(3):267–74.

    Article  CAS  PubMed  Google Scholar 

  4. Mor-Avi V, Lang RM. Is echocardiography reliable for monitoring the adverse cardiac effects of chemotherapy? J Am Coll Cardiol. 2013;61(1):85–7.

    Article  PubMed  Google Scholar 

  5. Thavendiranathan P, Poulin F, Lim KD, et al. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63(25 Pt A):2751–68.

    Article  PubMed  Google Scholar 

  6. Otterstad JE, Froeland G, St John Sutton M, et al. Accuracy and reproducibility of biplane two-dimensional echocardiographic measurements of left ventricular dimensions and function. Eur Heart J. 1997;18(3):507–13.

    Article  CAS  PubMed  Google Scholar 

  7. Aurigemma GP, Tighe DA. Echocardiography and reversible left ventricular dysfunction. Am J Med. 2006;119(1):18–21.

    Article  PubMed  Google Scholar 

  8. Abdelrahman M, McCarthy MT, Yusof H, et al. Successful capecitabine rechallenge following 5-fluorouracil-induced Takotsubo syndrome. Oxf Med Case Rep. 2016;2016(3):47–50.

    Article  Google Scholar 

  9. Shalbaf A, Behnam H, Alizade-Sani Z, et al. Automatic classification of left ventricular regional wall motion abnormalities in echocardiography images using nonrigid image registration. J Digit Imaging. 2013;26(5):909–19.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pudil R, Horacek JM, Strasova A, et al. Monitoring of the very early changes of left ventricular diastolic function in patients with acute leukemia treated with anthracyclines. Exp Oncol. 2008;30(2):160–2.

    CAS  PubMed  Google Scholar 

  11. Stoddard MF, Seeger J, Liddell NE, et al. Prolongation of isovolumetric relaxation time as assessed by Doppler echocardiography predicts doxorubicin-induced systolic dysfunction in humans. J Am Coll Cardiol. 1992;20(1):62–9.

    Article  CAS  PubMed  Google Scholar 

  12. Shakir DK, Rasul KI. Chemotherapy induced cardiomyopathy: pathogenesis, monitoring and management. J Clin Med Res. 2009;1(1):8–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Albini A, Pennesi G, Donatelli F, et al. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102(1):14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang RS, Duan S, Kistner EO, et al. Genetic variants contributing to daunorubicin-induced cytotoxicity. Cancer Res. 2008;68(9):3161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000;22(4):263–302.

    Article  CAS  PubMed  Google Scholar 

  16. Onitilo AA, Engel JM, Stankowski RV. Cardiovascular toxicity associated with adjuvant trastuzumab therapy: prevalence, patient characteristics, and risk factors. Ther Adv Drug Saf. 2014;5(4):154–66.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Herrmann J, Lerman A, Sandhu NP, et al. Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clin Proc. 2014;89(9):1287–306.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ezaz G, Long JB, Gross CP, et al. Risk prediction model for heart failure and cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Heart Assoc. 2014;3(1), e000472.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cardinale D, Sandri MT, Colombo A, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54.

    Article  CAS  PubMed  Google Scholar 

  20. Yingchoncharoen T, Agarwal S, Popovic ZB, et al. Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr. 2013;26(2):185–91. This meta-analysis establishes normal values of speckle tracking echocardiography strain.

    Article  PubMed  Google Scholar 

  21. Sawaya H, Sebag IA, Plana JC, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107(9):1375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Poterucha JT, Kutty S, Lindquist RK, et al. Changes in left ventricular longitudinal strain with anthracycline chemotherapy in adolescents precede subsequent decreased left ventricular ejection fraction. J Am Soc Echocardiogr. 2012;25(7):733–40.

    Article  PubMed  Google Scholar 

  23. Pizzino F, Vizzari G, Qamar R, et al. Multimodality imaging in cardiooncology. J Oncol. 2015;2015:263950.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Negishi K, Negishi T, Hare JL, et al. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr. 2013;26(5):493–8.

    Article  PubMed  Google Scholar 

  25. Kaneko S, Tham EB, Haykowsky MJ, et al. Impaired left ventricular reserve in childhood cancer survivors treated with anthracycline therapy. 2016. Pediatr Blood Cancer.

    Google Scholar 

  26. Stoodley PW, Richards DA, Boyd A, et al. Altered left ventricular longitudinal diastolic function correlates with reduced systolic function immediately after anthracycline chemotherapy. Eur Heart J Cardiovasc Imaging. 2013;14(3):228–34.

    Article  PubMed  Google Scholar 

  27. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14.

    Article  PubMed  Google Scholar 

  28. Dorup I, Levitt G, Sullivan I, et al. Prospective longitudinal assessment of late anthracycline cardiotoxicity after childhood cancer: the role of diastolic function. Heart. 2004;90(10):1214–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Civelli M, Cardinale D, Martinoni A, et al. Early reduction in left ventricular contractile reserve detected by dobutamine stress echo predicts high-dose chemotherapy-induced cardiac toxicity. Int J Cardiol. 2006;111(1):120–6.

    Article  PubMed  Google Scholar 

  30. Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20(5):1215–21.

    Article  CAS  PubMed  Google Scholar 

  31. Thavendiranathan P, Grant AD, Negishi T, et al. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61(1):77–84. This study establishes that 3-dimensional as opposed to 2-dimensional echocardiography for measurement of ejection fraction is the more appropriate technique for serial evaluation of left ventricular systolic funtion in patients undergoing cancer chemotherapy.

    Article  PubMed  Google Scholar 

  32. Walker J, Bhullar N, Fallah-Rad N, et al. Role of three-dimensional echocardiography in breast cancer: comparison with two-dimensional echocardiography, multiple-gated acquisition scans, and cardiac magnetic resonance imaging. J Clin Oncol. 2010;28(21):3429–36.

    Article  PubMed  Google Scholar 

  33. Barendswaard EC, Prpic H, Van der Wall EE, et al. Right ventricle wall motion abnormalities in patients treated with chemotherapy. Clin Nucl Med. 1991;16(7):513–6.

    Article  CAS  PubMed  Google Scholar 

  34. Grover S, Leong DP, Chakrabarty A, et al. Left and right ventricular effects of anthracycline and trastuzumab chemotherapy: a prospective study using novel cardiac imaging and biochemical markers. Int J Cardiol. 2013;168(6):5465–7.

    Article  PubMed  Google Scholar 

  35. Shah NP, Wallis N, Farber HW, et al. Clinical features of pulmonary arterial hypertension in patients receiving dasatinib. Am J Hematol. 2015;90(11):1060–4.

    Article  CAS  PubMed  Google Scholar 

  36. Lemarie J, Huttin O, Girerd N, et al. Usefulness of speckle-tracking imaging for right ventricular assessment after acute myocardial infarction: a magnetic resonance imaging/echocardiographic comparison within the relation between aldosterone and cardiac remodeling after myocardial infarction study. J Am Soc Echocardiogr. 2015;28(7):818–27.e4.

    Article  PubMed  Google Scholar 

  37. Park JH, Negishi K, Kwon DH, et al. Validation of global longitudinal strain and strain rate as reliable markers of right ventricular dysfunction: comparison with cardiac magnetic resonance and outcome. J Cardiovasc Ultrasound. 2014;22(3):113–20. This study validates strain derived by echocardiography as reliable method to assess right ventricular function. Strain imaging is compared to cardiac magnetic resonance imaging.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lisi M, Cameli M, Righini FM, et al. RV longitudinal deformation correlates with myocardial fibrosis in patients with end-stage heart failure. JACC Cardiovasc Imaging. 2015;8(5):514–22.

    Article  PubMed  Google Scholar 

  39. Portnoy SG, Rudski LG. Echocardiographic evaluation of the right ventricle: a 2014 perspective. Curr Cardiol Rep. 2015;17(4):21.

    Article  PubMed  Google Scholar 

  40. Shimada YJ, Shiota M, Siegel RJ, et al. Accuracy of right ventricular volumes and function determined by three-dimensional echocardiography in comparison with magnetic resonance imaging: a meta-analysis study. J Am Soc Echocardiogr. 2010;23(9):943–53.

    Article  PubMed  Google Scholar 

  41. Tanindi A, Demirci U, Tacoy G, et al. Assessment of right ventricular functions during cancer chemotherapy. Eur J Echocardiogr. 2011;12(11):834–40.

    Article  PubMed  Google Scholar 

  42. Murbraech K, Wethal T, Smeland KB, et al. Valvular dysfunction in lymphoma survivors treated with autologous stem cell transplantation: a national cross-sectional study. JACC Cardiovasc Imaging. 2016;9(3):230–9.

    Article  PubMed  Google Scholar 

  43. Cozzarin A, Cianciulli TF, Saccheri MC, et al. Severe mitral regurgitation after radiotherapy. Echocardiography. 2014;31(2):E37–40.

    Article  PubMed  Google Scholar 

  44. Sharma A, Minhas HS, Sakhuja P, et al. Left atrial primary B cell lymphoma presenting with mitral regurgitation. J Card Surg. 2012;27(3):300–3.

    Article  PubMed  Google Scholar 

  45. Karanth NV, Roy A, Joseph M, et al. Utility of prechemotherapy echocardiographical assessment of cardiac abnormalities. Support Care Cancer. 2011;19(12):2021–6.

    Article  PubMed  Google Scholar 

  46. Santos AR, Stuart B, Cotrim C, et al. Carcinoid heart—case report. Rev Port Cardiol. 2012;31(10):661–5.

    PubMed  Google Scholar 

  47. Schmitt CJ, Dietrich S, Ho AD, et al. Replacement of conventional doxorubicin by pegylated liposomal doxorubicin is a safe and effective alternative in the treatment of non-Hodgkin’s lymphoma patients with cardiac risk factors. Ann Hematol. 2012;91(3):391–7.

    Article  CAS  PubMed  Google Scholar 

  48. Latib A, Montorfano M, Figini F, et al. Percutaneous valve replacement in a young adult for radiation-induced aortic stenosis. J Cardiovasc Med (Hagerstown). 2012;13(6):397–8.

    Article  Google Scholar 

  49. Pugliatti P, Donato R, Grimaldi P, et al. Extrinsic pulmonary stenosis in primary mediastinal B-cellular lymphoma. J Clin Ultrasound. 2015;43(1):68–70.

    PubMed  Google Scholar 

  50. Zencirci E, Gunduz S, Zencirci AE, et al. Echocardiography in imaging an extremely rare cause of extrinsic pulmonary stenosis: rapidly progressive primary mediastinal embryonal carcinoma. Ann Thorac Surg. 2012;94(5):e113–4.

    Article  PubMed  Google Scholar 

  51. Lange SA, Ebner B, Wess A, et al. Echocardiography signs of early cardiac impairment in patients with breast cancer and trastuzumab therapy. Clin Res Cardiol. 2012;101(6):415–26.

    Article  CAS  PubMed  Google Scholar 

  52. Karabay CY, Kocabay G, Kalayci A, et al. Mitral regurgitation due to papillary muscle dyssynchrony during trastuzumab treatment. Cardiology. 2010;117(4):296–300.

    Article  PubMed  Google Scholar 

  53. Todaro MC, Oreto L, Qamar R, et al. Cardioncology: state of the heart. Int J Cardiol. 2013;168(2):680–7.

    Article  PubMed  Google Scholar 

  54. Ewer MS, Vooletich MT, Durand JB, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005;23(31):7820–6.

    Article  CAS  PubMed  Google Scholar 

  55. Gunaydin ZY, Bektas O, Ciltas A, et al. Does Trastuzumab cause permanent severe mitral regurgitation? Int J Cardiol. 2015;182:8–9.

    Article  PubMed  Google Scholar 

  56. Klein AL, Abbara S, Agler DA, et al. American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with pericardial disease: endorsed by the Society for Cardiovascular Magnetic Resonance and Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr. 2013;26(9):965–1012.e15.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy J. Bottinor.

Ethics declarations

Conflict of Interest

Wendy J. Bottinor, Christopher K. Migliore, Carrie A. Lenneman, and Marcus F. Stoddard declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Wendy J. Bottinor and Christopher K. Migliore are co-first authors on this paper.

This article is part of the Topical Collection on Echocardiography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bottinor, W.J., Migliore, C.K., Lenneman, C.A. et al. Echocardiographic Assessment of Cardiotoxic Effects of Cancer Therapy. Curr Cardiol Rep 18, 99 (2016). https://doi.org/10.1007/s11886-016-0776-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-016-0776-z

Keywords

Navigation