Skip to main content

Advertisement

Log in

Molecular Cardiovascular Magnetic Resonance: Current Status and Future Prospects

  • Cardiac PET, CT, and MRI (SE Petersen and F Pugliese, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

In the Western world and developing countries, the number one causes of mortality and morbidity result from cardiovascular diseases. Cardiovascular diseases represent a wide range of pathologies, including myocardial infarction, peripheral vascular disease, and cerebrovascular disease, which are all linked by a common cause - atherosclerosis. Currently, the diagnosis of atherosclerosis is in most cases established at the end stage of the disease, when patients are administered to the emergency room due to a myocardial infarction or stroke. Even though cardiovascular diseases have an enormous impact on society, there are still limitations in the early diagnosis and the prevention of the disease. Current imaging methods mainly focus on morphological changes that occur at an advanced disease stage, e.g., degree of stenosis. Cardiovascular magnetic resonance imaging and specifically molecular cardiovascular magnetic resonance imaging are capable to reveal pathophysiological changes already occurring during early atherosclerotic plaque formation. This allows for the assessment of cardiovascular disease on a level, which goes beyond morphological or anatomical criteria. In this review, we will introduce promising MR-based molecular imaging strategies for the non-invasive assessment of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Norenberg D, Ebersberger HU, Diederichs G, Hamm B, Botnar RM, Makowski MR. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease. Eur Radiol 2015.

  2. Sosnovik DE. Molecular imaging in cardiovascular magnetic resonance imaging: current perspective and future potential. Top Magn Reson Imaging. 2008;19:59–68.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322.

    Article  PubMed  Google Scholar 

  4. Ambrose JA, Tannenbaum MA, Alexopoulos D, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol. 1988;12:56–62.

    Article  CAS  PubMed  Google Scholar 

  5. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation. 2002;105:939–43.

    Article  PubMed  Google Scholar 

  6. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    Article  CAS  PubMed  Google Scholar 

  7. Saam T, Underhill HR, Chu B, et al. Prevalence of American Heart Association type VI carotid atherosclerotic lesions identified by magnetic resonance imaging for different levels of stenosis as measured by duplex ultrasound. J Am Coll Cardiol. 2008;51:1014–21.

    Article  PubMed  Google Scholar 

  8. Esposito L, Saam T, Heider P, et al. MRI plaque imaging reveals high-risk carotid plaques especially in diabetic patients irrespective of the degree of stenosis. BMC Med Imaging. 2010;10:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation. 2000;102:2582–7.

    Article  CAS  PubMed  Google Scholar 

  10. Fayad ZA, Fuster V, Fallon JT, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation. 2000;102:506–10.

    Article  CAS  PubMed  Google Scholar 

  11. Corti R, Fuster V, Fayad ZA, et al. Effects of aggressive versus conventional lipid-lowering therapy by simvastatin on human atherosclerotic lesions: a prospective, randomized, double-blind trial with high-resolution magnetic resonance imaging. J Am Coll Cardiol. 2005;46:106–12.

    Article  CAS  PubMed  Google Scholar 

  12. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.

    Article  CAS  PubMed  Google Scholar 

  13. Lusis AJ. Atherosclerosis. Nature. 2000;407:233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choudhury RP, Fuster V, Fayad ZA. Molecular, cellular and functional imaging of atherothrombosis. Nat Rev Drug Discov. 2004;3:913–25.

    Article  CAS  PubMed  Google Scholar 

  15. Sadat U, Jaffer FA, van Zandvoort MA, Nicholls SJ, Ribatti D, Gillard JH. Inflammation and neovascularization intertwined in atherosclerosis: imaging of structural and molecular imaging targets. Circulation. 2014;130:786–94.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pasterkamp G, Wensing PJ, Post MJ, Hillen B, Mali WP, Borst C. Paradoxical arterial wall shrinkage may contribute to luminal narrowing of human atherosclerotic femoral arteries. Circulation. 1995;91:1444–9.

    Article  CAS  PubMed  Google Scholar 

  17. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    Article  CAS  PubMed  Google Scholar 

  18. Narula J, Garg P, Achenbach S, Motoyama S, Virmani R, Strauss HW. Arithmetic of vulnerable plaques for noninvasive imaging. Nat Clin Pract Cardiovasc Med. 2008;5 Suppl 2:S2–10.

    Article  PubMed  Google Scholar 

  19. Botnar RM, Ebersberger H, Noerenberg D, et al. Molecular imaging in cardiovascular diseases. Rofo. 2015;36:92–101.

    CAS  PubMed  Google Scholar 

  20. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99:2293–352.

    Article  CAS  PubMed  Google Scholar 

  21. Maiseyeu A, Mihai G, Kampfrath T, et al. Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis. J Lipid Res. 2009;50:2157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Caruthers SD, Cyrus T, Winter PM, Wickline SA, Lanza GM. Anti-angiogenic perfluorocarbon nanoparticles for diagnosis and treatment of atherosclerosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:311–23.

    Article  CAS  PubMed  Google Scholar 

  23. Amirbekian V, Lipinski MJ, Briley-Saebo KC, et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A. 2007;104:961–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caravan P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev. 2006;35:512–23.

    Article  CAS  PubMed  Google Scholar 

  25. Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology. 1990;175:489–93.

    Article  CAS  PubMed  Google Scholar 

  26. Farrar CT, Dai G, Novikov M, et al. Impact of field strength and iron oxide nanoparticle concentration on the linearity and diagnostic accuracy of off-resonance imaging. NMR Biomed. 2008;21:453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108:2064–110.

    Article  CAS  PubMed  Google Scholar 

  28. Wang YX. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1:35–40.

    PubMed  PubMed Central  Google Scholar 

  29. Zhao X, Zhao H, Chen Z, Lan M. Ultrasmall superparamagnetic iron oxide nanoparticles for magnetic resonance imaging contrast agent. J Nanosci Nanotechnol. 2014;14:210–20.

    Article  CAS  PubMed  Google Scholar 

  30. Kerwin WS, O’Brien KD, Ferguson MS, Polissar N, Hatsukami TS, Yuan C. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology. 2006;241:459–68.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Winter PM, Morawski AM, Caruthers SD, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation. 2003;108:2270–4.

    Article  CAS  PubMed  Google Scholar 

  32. Winter PM, Neubauer AM, Caruthers SD, et al. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26:2103–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kooi ME, Cappendijk VC, Cleutjens KB, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation. 2003;107:2453–8.

    Article  CAS  PubMed  Google Scholar 

  34. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation. 2001;103:415–22.

    Article  CAS  PubMed  Google Scholar 

  35. Schmitz SA, Coupland SE, Gust R, et al. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Investigative radiology. 2000;35:460–71.

    Article  CAS  PubMed  Google Scholar 

  36. Morishige K, Kacher DF, Libby P, et al. High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation. 2010;122:1707–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Korosoglou G, Weiss RG, Kedziorek DA, et al. Noninvasive detection of macrophage-rich atherosclerotic plaque in hyperlipidemic rabbits using “positive contrast” magnetic resonance imaging. Journal of the American College of Cardiology. 2008;52:483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Makowski MR, Varma G, Wiethoff A, et al. Non-invasive assessment of atherosclerotic plaque progression in ApoE−/− mice using susceptibility gradient mapping. Circulation. Cardiovascular imaging. 2011.

  39. Segers FM, den Adel B, Bot I, et al. Scavenger receptor-AI-targeted iron oxide nanoparticles for in vivo MRI detection of atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2013;33:1812–9. This group demonstrated that by targeting the scavenger receptor AI using a specific peptide on the surface of USPIOs, a significantly increased atherosclerotic plaque accumulation can be achieved compared to nontargeted USPIOs.

    Article  CAS  PubMed  Google Scholar 

  40. Sirol M, Itskovich VV, Mani V, et al. Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation. 2004;109:2890–6.

    Article  CAS  PubMed  Google Scholar 

  41. Sirol M, Moreno P, Purushothaman K, et al. Increased neovascularization in advanced lipid-rich atherosclerotic lesions detected by gadofluorine-M-enhanced MRI: implications for plaque vulnerability. Circulation: Cardiovascular Imaging. 2009;2:391–6.

    PubMed Central  Google Scholar 

  42. Ronald JA, Chen Y, Belisle AJ, et al. Comparison of gadofluorine-M and Gd-DTPA for noninvasive staging of atherosclerotic plaque stability using MRI. Circ Cardiovasc Imaging. 2009;2:226–34.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Makowski MR, Wiethoff AJ, Blume U, et al. Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nature medicine. 2011;17:383–8. This study demonstrates the use of an elastin specific molecular probe for the evaluation of plaque composition at different atherosclerotic - plaque stages in vivo.

  44. Flacke S, Fischer S, Scott MJ, et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation. 2001;104:1280–5.

    Article  CAS  PubMed  Google Scholar 

  45. Botnar RM, Buecker A, Wiethoff AJ, et al. In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation. 2004;110:1463–6.

    Article  PubMed  Google Scholar 

  46. Botnar RM, Perez AS, Witte S, et al. In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation. 2004;109:2023–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spuentrup E, Buecker A, Katoh M, et al. Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation 2005

  48. Chen W, Cormode DP, Vengrenyuk Y, et al. Collagen-specific peptide conjugated HDL nanoparticles as MRI contrast agent to evaluate compositional changes in atherosclerotic plaque regression. JACC Cardiovasc Imaging. 2013;6:373–84. In this study HDL nanoparticles were functionalized with a collagen specific peptide and used to target intraplaque collagen during atherosclerotic plaque progression.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus R. Makowski.

Ethics declarations

Conflict of Interest

Yvonne Y. Bender, Hans U. Ebersberger, Andreas Pfeifer, Gerd Diederichs, Peter Hoppe, René M. Botnar, and Marcus R. Makowski declare that they have no conflict of interest.

Bernd Hamm has received grant money from the following organizations to the Department of Radiology, Charité (Berlin, Germany): Abbott, Actelion Pharmaceuticals, Bayer Schering Pharma, Bayer Vital, BRACCO Group, Bristol-Meyers Squibb, Charité Research Organisation GmBH, Deutsche Krebshilfe, Dt. Stiftung für Herz-forschung, Essex Pharma, EU Programmes, Fibrex Medical Ins., Focused Ultrasound Surgery Foundation, Fraunhofer Gesellschaft, Guerbetm, INC Research, InSightec Ltd., IPSEN Pharma, Kendel/MorphoSys AG, Lilly GmBH, Lundbeck GmbH, MeVis Medical Solutions AG, Nexus Oncology, Novartis, Parexel CRO Service, Perceptive, Pfizer GmbH, Philipps, Sanofis-Aventis S.A., Siemens, Spectranetics GmbH, Terumo Medical Corporation, TNS Healthcare GmbH, Toshiba, UCB Pharma, Wyeth Pharma, and Zukunftsfond Berlin (TSB).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiac PET, CT, and MRI

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bender, Y.Y., Pfeifer, A., Ebersberger, H.U. et al. Molecular Cardiovascular Magnetic Resonance: Current Status and Future Prospects. Curr Cardiol Rep 18, 47 (2016). https://doi.org/10.1007/s11886-016-0719-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-016-0719-8

Keywords

Navigation