Skip to main content

Advertisement

Log in

Unlocking the Door to New Therapies in Cardiovascular Disease: MicroRNAs Hold the Key

  • Cardiovascular Genomics (R McPherson, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs are the most abundant class of regulatory noncoding RNA and are estimated to regulate over half of all human protein-coding genes. The heart is comprised of some of the most complex and highly conserved genetic networks and is thus under tight regulation by post-transcriptional mechanisms. MicroRNAs (miRNAs) have been found to regulate virtually all aspects of cardiac physiology and pathophysiology, from the development of inflammatory atherosclerosis to hypertrophic remodeling in heart failure. Owing to the wide-spread involvement of miRNAs in the development of and protection from many diseases, there has been increasing excitement surrounding their potential as novel therapeutic targets to treat and prevent the worldwide epidemic of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chilton RJ. Pathophysiology of coronary heart disease: a brief review. J Am Osteopath Assoc. 2004;104(9 Suppl 7):S5–8.

    PubMed  Google Scholar 

  2. Cholesterol Treatment Trialists C, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81. doi:10.1016/S0140-6736(10)61350-5.

    Article  CAS  Google Scholar 

  3. Ecker JR, Bickmore WA, Barroso I, Pritchard JK, Gilad Y, Segal E. Genomics: ENCODE explained. Nature. 2012;489(7414):52–5. doi:10.1038/489052a.

  4. Hata A. Functions of microRNAs in cardiovascular biology and disease. Annu Rev Physiol. 2013;75:69–93. doi:10.1146/annurev-physiol-030212-183737.

    Article  CAS  PubMed  Google Scholar 

  5. Condorelli G, Latronico MVG, Cavarretta E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol. 2014;63(21):2177–87. doi:10.1016/j.jacc.2014.01.050.

  6. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145(3):341–55. doi:10.1016/j.cell.2011.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feig JE. Regression of atherosclerosis: insights from animal and clinical studies. Ann Glob Health. 2014;80(1):13–23. doi:10.1016/j.aogh.2013.12.001.

    Article  PubMed  Google Scholar 

  8. Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328(5985):1566–9. doi:10.1126/science.1189123.

    Article  CAS  PubMed  Google Scholar 

  9. Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328(5985):1570–3. doi:10.1126/science.1189862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gerin I, Clerbaux LA, Haumont O, Lanthier N, Das AK, Burant CF, et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem. 2010;285(44):33652–61. doi:10.1074/jbc.M110.152090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Horie T, Ono K, Horiguchi M, Nishi H, Nakamura T, Nagao K, et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A. 2010;107(40):17321–6. doi:10.1073/pnas.1008499107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marquart TJ, Allen RM, Ory DS, Baldan A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A. 2010;107(27):12228–32. doi:10.1073/pnas.1005191107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest. 2011;121(7):2921–31. doi:10.1172/jci57275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Horie T, Baba O, Kuwabara Y, Chujo Y, Watanabe S, Kinoshita M, et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J Am Heart Assoc. 2012;1(6):e003376. doi:10.1161/JAHA.112.003376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rotllan N, Ramirez CM, Aryal B, Esau CC, Fernandez-Hernando C. Therapeutic silencing of MicroRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice. Arterioscler, Thromb, Vasc Biol. 2013. doi:10.1161/ATVBAHA.113.301732.

  16. Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478(7369):404–7. doi:10.1038/nature10486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Aguiar Vallim TQ, Tarling EJ, Kim T, Civelek M, Baldan A, Esau C, et al. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor. Circ Res. 2013;112(12):1602–12. doi:10.1161/CIRCRESAHA.112.300648.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ramirez CM, Rotllan N, Vlassov AV, Davalos A, Li M, Goedeke L, et al. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ Res. 2013;112(12):1592–601. doi:10.1161/CIRCRESAHA.112.300626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramirez CM, Davalos A, Goedeke L, Salerno AG, Warrier N, Cirera-Salinas D, et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler, Thromb, Vasc Biol. 2011;31(11):2707–14. doi:10.1161/ATVBAHA.111.232066.

    Article  CAS  Google Scholar 

  20. Hu Y-W, Hu Y-R, Zhao J-Y, Li S-F, Ma X, Wu S-G, et al. An agomir of miR-144-3p accelerates plaque formation through impairing reverse cholesterol transport and promoting pro-inflammatory cytokine production. PLoS One. 2014;9(4):e94997. doi:10.1371/journal.pone.0094997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12(9):735–9. doi:10.1016/S0960-9822(02)00809-6.

  22. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438(7068):685–9. doi:10.1038/nature04303.

    Article  PubMed  CAS  Google Scholar 

  23. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452(7189):896–9. doi:10.1038/nature06783.

    Article  CAS  PubMed  Google Scholar 

  24. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3(2):87–98. doi:10.1016/j.cmet.2006.01.005.

  25. Jopling CL, Schutz S, Sarnow P. Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe. 2008;4(1):77–85. doi:10.1016/j.chom.2008.05.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science. 2005;309(5740):1577–81. doi:10.1126/science.1113329.

    Article  CAS  PubMed  Google Scholar 

  27. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–94. doi:10.1056/NEJMoa1209026. The phase 2a results of miravirsen, an inhibitor against miR-122, in patients with hepatitis C virus. These are the most advanced clinical studies with anti-microRNA therapies and will pave the way for future miRNA-based therapeutics.

    Article  CAS  PubMed  Google Scholar 

  28. Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM, Soh J, et al. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med. 2013;19(7):892–900. doi:10.1038/nm.3200. An elegant example of how miR-30c controls LDL cholesterol levels by targeting MTP, yet concomitantly reduces lipid synthesis by targeting LPGAT1, revitalizing hope for miR-30c as an MTP-targeting therapy for hypercholesterolemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613–18. doi:10.1038/nm1582.

    Article  CAS  PubMed  Google Scholar 

  30. Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, Dorn LE, Condorelli G, et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res. 2010;106(1):166–75. doi:10.1161/CIRCRESAHA.109.202176.

    Article  CAS  PubMed  Google Scholar 

  31. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22(23):3242–54. doi:10.1101/gad.1738708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dong S, Ma W, Hao B, Hu F, Yan L, Yan X, et al. microRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2. Int J Clin Exp Pathol. 2014;7(2):565–74.

    PubMed  PubMed Central  Google Scholar 

  33. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980–4. doi:10.1038/nature07511.

    Article  CAS  PubMed  Google Scholar 

  34. Kumarswamy R, Volkmann I, Jazbutyte V, Dangwal S, Park D-H, Thum T. Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21. Arterioscler, Thromb, Vasc Biol. 2012;32(2):361–9. doi:10.1161/ATVBAHA.111.234286.

    Article  CAS  Google Scholar 

  35. Patrick DM, Montgomery RL, Qi X, Obad S, Kauppinen S, Hill JA, et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest. 2010;120(11):3912–16. doi:10.1172/JCI43604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124(14):1537–47. doi:10.1161/CIRCULATIONAHA.111.030932.

  37. Callis TE, Pandya K, Seok HY, Tang R-h, Tatsuguchi M, Huang Z-p, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Investig. 2009;119(9):2772–86. doi:10.1172/JCI36154.2772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575–9. doi:10.1126/science.1139089.

    Article  PubMed  CAS  Google Scholar 

  39. Grueter CE, van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi X, et al. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell. 2012;149(3):671–83. doi:10.1016/j.cell.2012.03.029. An example of how a tissue-specific miRNA can regulate whole-body energy metabolism by targeting genes in the heart.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. da Costa Martins PA, Salic K, Gladka MM, Armand AS, Leptidis S, el Azzouzi H, et al. MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat Cell Biol. 2010;12(12):1220–7. doi:10.1038/ncb2126.

    Article  PubMed  CAS  Google Scholar 

  41. Bang C, Fiedler J, Thum T. Cardiovascular importance of the microRNA-23/27/24 family. Microcirculation (New York, NY: 1994). 2012;19(3):208–14. doi:10.1111/j.1549-8719.2011.00153.

    Article  CAS  Google Scholar 

  42. Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S. Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23-27-24 clusters. Proc Natl Acad Sci U S A. 2011;108(20):8287–92. doi:10.1073/pnas.1105254108.

  43. Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation. 2011;124(6):720–30. doi:10.1161/CIRCULATIONAHA.111.039008.

    Article  CAS  PubMed  Google Scholar 

  44. Qian L, Van Laake LW, Huang Y, Liu S, Wendland MF, Srivastava D. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med. 2011;208(3):549–60. doi:10.1084/jem.20101547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang S, Olson EN. AngiomiRs—key regulators of angiogenesis. Curr Opin Genet Dev. 2009;19(3):205–11. doi:10.1016/j.gde.2009.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu W, Xiao H, Laguna-Fernandez A, Villarreal Jr G, Wang KC, Geary GG, et al. Flow-dependent regulation of Kruppel-like factor 2 is mediated by microRNA-92a. Circulation. 2011;124(5):633–41. doi:10.1161/CIRCULATIONAHA.110.005108.

    Article  CAS  PubMed  Google Scholar 

  47. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009;324(5935):1710–13. doi:10.1126/science.1174381.

    Article  CAS  PubMed  Google Scholar 

  48. Loyer X, Potteaux S, Vion A-C, Guérin CL, Boulkroun S, Rautou P-E, et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res. 2014;114(3):434–43. doi:10.1161/CIRCRESAHA.114.302213.

    Article  CAS  PubMed  Google Scholar 

  49. Hinkel R, Penzkofer D, Zühlke S, Fischer A, Husada W, Xu Q-F, et al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation. 2013;128(10):1066–75. doi:10.1161/CIRCULATIONAHA.113.001904.

    Article  CAS  PubMed  Google Scholar 

  50. Zhu H, Fan G-C. Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc Res. 2012;94(2):284–92. doi:10.1093/cvr/cvr291.

    Article  CAS  PubMed  Google Scholar 

  51. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15(2):272. doi:10.1016/j.devcel.2008.07.008.

  52. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15(2):261–71. doi:10.1016/j.devcel.2008.07.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008;105(5):1516–21. doi:10.1073/pnas.0707493105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2(100):ra81. doi:10.1126/scisignal.2000610.

    Article  PubMed  Google Scholar 

  55. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med. 2014;20(4):368–76. doi:10.1038/nm.3487. This work is the first to describe how different “arms” of a mature microRNA, -3p versus -5p, can have divergent functions in regulating endothelial function in atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 2009;23(18):2166–78. doi:10.1101/gad.1842409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cheng Y, Liu X, Yang J, Lin Y, Xu D-Z, Lu Q, et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res. 2009;105(2):158–66. doi:10.1161/CIRCRESAHA.109.197517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Boettger T, Beetz N, Kostin S, Schneider J, Kruger M, Hein L, et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest. 2009;119(9):2634–47. doi:10.1172/JCI38864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta N, et al. MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation. 2012;126(11 Suppl 1):S81–90. doi:10.1161/CIRCULATIONAHA.111.084186.

    CAS  PubMed  Google Scholar 

  60. O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A. 2007;104(5):1604–9. doi:10.1073/pnas.0610731104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Graff JW, Dickson AM, Clay G, McCaffrey AP, Wilson ME. Identifying functional microRNAs in macrophages with polarized phenotypes. J Biol Chem. 2012;287(26):21816–25. doi:10.1074/jbc.M111.327031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR, et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest. 2012;122(11):4190–202. doi:10.1172/JCI61716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Du F, Yu F, Wang Y, Hui Y, Carnevale K, Fu M, et al. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler, Thromb, Vasc Biol. 2014;34(4):759–67. doi:10.1161/ATVBAHA.113.302701.

    Article  CAS  Google Scholar 

  64. Donners MM, Wolfs IM, Stoger LJ, van der Vorst EP, Pottgens CC, Heymans S, et al. Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic mice. PLoS One. 2012;7(4):e35877. doi:10.1371/journal.pone.0035877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wei Y, Nazari-Jahantigh M, Chan L, Zhu M, Heyll K, Corbalan-Campos J, et al. The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis. Circulation. 2013. doi:10.1161/CIRCULATIONAHA.112.000736.

  66. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103(33):12481–6. doi:10.1073/pnas.0605298103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chassin C, Kocur M, Pott J, Duerr CU, Gütle D, Lotz M, et al. miR-146a mediates protective innate immune tolerance in the neonate intestine. Cell Host Microbe. 2010;8(4):358–68. doi:10.1016/j.chom.2010.09.005.

    Article  CAS  PubMed  Google Scholar 

  68. Perry MM, Sa M, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay M. Rapid changes in microRNA-146a expression negatively regulate the IL-1-induced inflammatory response in human lung alveolar epithelial cells. J Immunol. 2008;180(8):5689–98. doi:10.4049/jimmunol.180.8.5689.

  69. Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011;208(6):1189–201. doi:10.1084/jem.20101823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med. 2013;5(7):949–66. doi:10.1002/emmm.201202318.

    Article  CAS  PubMed Central  Google Scholar 

  71. Wei Y, Nazari-Jahantigh M, Neth P, Weber C, Schober A. MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis? Arterioscler, Thromb, Vasc Biol. 2013;33(3):449–54. doi:10.1161/ATVBAHA.112.300279.

    Article  CAS  Google Scholar 

  72. Chen X, Liang H, Zhang J, Zen K, Zhang C-Y. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 2012;22(3):125–32. doi:10.1016/j.tcb.2011.12.001.

    Article  CAS  PubMed  Google Scholar 

  73. Rayner KJ, Hennessy EJ. Extracellular communication via microRNA: lipid particles have a new message. J Lipid Res. 2013;54(5):1174–81. doi:10.1194/jlr.R034991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature cell biology. 2011;13(4):423–33. doi:10.1038/ncb2210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ra B, Vickers KC. Intercellular transport of microRNAs. Arterioscler, Thromb, Vasc Biol. 2013;33(2):186–92. doi:10.1161/ATVBAHA.112.300139.

    Article  CAS  Google Scholar 

  76. Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14(3):249–56. doi:10.1038/ncb2441. One of the first examples of how extracellular miRNAs facilitate communication between neighboring cells during the progression of cardiovascular disease.

    Article  CAS  PubMed  Google Scholar 

  77. Halkein J, Tabruyn SP, Ricke-hoch M, Haghikia A, Nguyen N-q-n, Scherr M, et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest. 2013;123(5):2143–54. doi:10.1172/JCI64365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010;39(1):133–44. doi:10.1016/j.molcel.2010.06.010.

    Article  CAS  PubMed  Google Scholar 

  79. Chen L, Wang Y, Pan Y, Zhang L, Shen C, Qin G, et al. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun. 2013;431(3):566–71. doi:10.1016/j.bbrc.2013.01.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5. doi:10.1038/nbt.1807.

    Article  CAS  PubMed  Google Scholar 

  81. Development of new therapeutic drugs and biologics for rare diseases. In: Field MJ, Boat TJ, editors. Rare diseases and orphan products: accelerating research and development. Development of New Therapeutic Drugs and Biologics for Rare Diseases. Washington, D.C.: THE NATIONAL ACADEMIES PRESS (2010).

  82. Brown WV, Rader DJ, Goldberg AC. JCL roundtable: drug treatment of severe forms of familial hypercholesterolemia. J Clin Lipidol. 2014;8(1):10–7. doi:10.1016/j.jacl.2013.09.004.

    Article  PubMed  Google Scholar 

  83. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107(5):677–84. doi:10.1161/CIRCRESAHA.109.215566.

  84. Hoekstra M, van der Lans CA, Halvorsen B, Gullestad L, Kuiper J, Aukrust P, et al. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun. 2010;394(3):792–7. doi:10.1016/j.bbrc.2010.03.075.

  85. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659–66. doi:10.1093/eurheartj/ehq013.

  86. Adachi T, Nakanishi M, Otsuka Y, Nishimura K, Hirokawa G, Goto Y, et al. Plasma microRNA-499 as a biomarker of acute myocardial infarction. Clin Chem. 2010;56(7):1183–5. doi:10.1373/clinchem.2010.144121.

  87. D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010;31(22):2765–73. doi:10.1093/eurheartj/ehq167.

  88. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, et al. Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3(6):499–506. doi:10.1161/CIRCGENETICS.110.957415.

  89. Cheng Y, Tan N, Yang J, Liu X, Cao X, He P, et al. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci (Lond). 2010;119(2):87–95. doi:10.1042/CS20090645.

  90. Long G, Wang F, Duan Q, Yang S, Chen F, Gong W, et al. Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction. PloS One. 2012;7(12):e50926. doi:10.1371/journal.pone.0050926.

  91. Voellenkle C, van Rooij J, Cappuzzello C, Greco S, Arcelli D, Di Vito L, et al. MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiol Genomics. 2010;42(3):420–6. doi:10.1152/physiolgenomics.00211.2009.

  92. Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N. Assessment of plasma miRNAs in congestive heart failure. Circ J. 2011;75(2):336–340. doi:10.1253/circj.CJ-10-0457.

  93. Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, Pinto YM. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010;106(6):1035–9. doi:10.1161/CIRCRESAHA.110.218297.

  94. Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis BS, Amir O. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail. 2012;14(2):147–54. doi:10.1093/eurjhf/hfr155.

  95. Fan KL, Zhang HF, Shen J, Zhang Q, Li XL. Circulating microRNAs levels in Chinese heart failure patients caused by dilated cardiomyopathy. Indian Heart J. 2013;65(1), 12–6. doi:10.1016/j.ihj.2012.12.022.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

My-Anh Nguyen, Denuja Karunakaran, and Katey J. Rayner declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Human and Animal Rights and Informed Consent

No human or animal studies performed by the authors

This article does not contain any studies with human or animal subjects performed by any of the authors.

Human studies done by authors (but no animal studies)

This article does not contain any studies with animal subjects performed by any of the authors. With regard to the authors’ research cited in this paper, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

Animal studies done by authors (but no human studies)

This article does not contain any studies with human subjects performed by any of the authors. With regard to the authors’ research cited in this paper, all institutional and national guidelines for the care and use of laboratory animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katey J Rayner.

Additional information

This article is part of the Topical Collection on Cardiovascular Genomics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, MA., Karunakaran, D. & Rayner, K.J. Unlocking the Door to New Therapies in Cardiovascular Disease: MicroRNAs Hold the Key. Curr Cardiol Rep 16, 539 (2014). https://doi.org/10.1007/s11886-014-0539-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-014-0539-7

Keywords

Navigation