Skip to main content
Log in

Catheter Ablation Guided by Real-Time MRI

  • Invasive Electrophysiology and Pacing (EK Heist, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Real-time magnetic resonance imaging (MRI) combines the advantages of excellent soft-tissue characterization in a true 3D anatomical and functional model with the possibility of lesion and gap visualization without the need of any radiation. Therefore, real-time MRI presents a particularly attractive imaging technology to guide electrophysiology studies and catheter ablation procedures. This article aims to provide an overview on current routine clinical application of MRI in the setting of interventional electrophysiology. Furthermore, development of real-time MRI guided electrophysiology studies and first experiences with MRI guided catheter ablation procedures are depicted. In this context advantages, challenges and limitations of real-time MRI guided catheter ablation as well as future perspectives are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AF:

Atrial fibrillation

CS:

Coronary sinus

DE:

Delayed enhancement

LAO:

Left anterior oblique

MRI:

Magnetic resonance imaging

RAO:

Right anterior oblique

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tracy CM, Akhtar M, DiMarco JP, Packer DL, Weitz HH, Creager MA, et al. American College of Cardiology/American Heart Association 2006 update of the clinical competence statement on invasive electrophysiology studies, catheter ablation, and cardioversion: a report of the American College of Cardiology/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training: developed in collaboration with the Heart Rhythm Society. Circulation. 2006;114:1654–68.

    Article  PubMed  Google Scholar 

  2. Ben-Haim SA, Osadchy D, Schuster I, Gepstein L, Hayam G, Josephson ME. Nonfluoroscopic, in vivo navigation and mapping technology. Nat Med. 1996;2:1393–5.

    Article  CAS  PubMed  Google Scholar 

  3. Wittkampf FH, Wever EF, Derksen R, Wilde AA, Ramanna H, Hauer RN, et al. LocaLisa: new technique for real-time 3-dimensional localization of regular intracardiac electrodes. Circulation. 1999;99:1312–7.

    Article  CAS  PubMed  Google Scholar 

  4. Casella M, Pelargonio G, Dello Russo A, Riva S, Bartoletti S, Santangeli P, et al. "Near-zero" fluoroscopic exposure in supraventricular arrhythmia ablation using the ensite navx mapping system: Personal experience and review of the literature. J Interv Card Electrophysiol. 2011;31:109–118.

  5. Rolf S, Sommer P, Gaspar T, John S, Arya A, Hindricks G, et al. Ablation of atrial fibrillation using novel 4-dimensional catheter tracking within autoregistered left atrial angiograms. Circ Arrhythm Electrophysiol. 2012;5:684–90.

    Article  PubMed  Google Scholar 

  6. Eitel C, Piorkowski C, Gaspar T, Sommer P, Hindricks G. The future of fluoroless cardiovascular interventions. JAFIB. 2013;5:76–9.

    Google Scholar 

  7. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100:1992–2002.

    Article  CAS  PubMed  Google Scholar 

  8. Nazarian S, Bluemke DA, Lardo AC, Zviman MM, Watkins SP, Dickfeld TL, et al. Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation. 2005;112:2821–5.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Wijnmaalen AP, van der Geest RJ, van Huls van Taxis CF, Siebelink HM, Kroft LJ, Bax JJ, et al. Head-to-head comparison of contrast-enhanced magnetic resonance imaging and electroanatomical voltage mapping to assess post-infarct scar characteristics in patients with ventricular tachycardias: real-time image integration and reversed registration. Eur Heart J. 2011;32:104–14. This study describes feasibility and value of integrating MRI-derived scar maps with electroanatomic voltage maps during VT ablation.

    Article  PubMed  Google Scholar 

  10. Karamitsos TD, Francis JM, Myerson S, Selvanayagam JB, Neubauer S. The role of cardiovascular magnetic resonance imaging in heart failure. J Am Coll Cardiol. 2009;54:1407–24.

    Article  PubMed  Google Scholar 

  11. Piers SR, Tao Q, van Huls van Taxis CF, Schalij MJ, van der Geest RJ, Zeppenfeld K. Contrast-enhanced MRI-derived scar patterns and associated ventricular tachycardias in nonischemic cardiomyopathy: implications for the ablation strategy. Circ Arrhythm Electrophysiol. 2013;6:875–83.

    Article  PubMed  Google Scholar 

  12. Sasaki T, Miller CF, Hansford R, Zipunnikov V, Zviman MM, Marine JE, Spragg D, Cheng A, Tandri H, Sinha S, Kolandaivelu A, Zimmerman SL, Bluemke DA, Tomaselli GF, Berger RD, Halperin HR, Calkins H, Nazarian S. Impact of nonischemic scar features on local ventricular electrograms and scar-related ventricular tachycardia circuits in patients with nonischemic cardiomyopathy. Circ Arrhythm Electrophysiol. 2013.

  13. Faris OP, Shein M. Food and Drug Administration perspective: magnetic resonance imaging of pacemaker and implantable cardioverter-defibrillator patients. Circulation. 2006;114:1232–3.

    Article  PubMed  Google Scholar 

  14. Dickfeld T, Tian J, Ahmad G, Jimenez A, Turgeman A, Kuk R, et al. MRI-Guided ventricular tachycardia ablation: integration of late gadolinium-enhanced 3D scar in patients with implantable cardioverter-defibrillators. Circ Arrhythm Electrophysiol. 2011;4:172–84.

    Article  PubMed  Google Scholar 

  15. Stevens SM, Tung R, Rashid S, Gima J, Cote S, Pavez G, Khan S, Ennis DB, Paul FJ, Boyle N, Shivkumar K, Hu P. Device artifact reduction for magnetic resonance imaging of patients with implantable cardioverter-defibrillators and ventricular tachycardia: Late gadolinium enhancement correlation with electroanatomic mapping. Heart Rhythm. 2013.

  16. Oakes RS, Badger TJ, Kholmovski EG, Akoum N, Burgon NS, Fish EN, et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation. 2009;119:1758–67.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Mahnkopf C, Badger TJ, Burgon NS, Daccarett M, Haslam TS, Badger CT, et al. Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayed-enhanced MRI: implications for disease progression and response to catheter ablation. Heart Rhythm. 2010;7:1475–81.

    Article  PubMed Central  PubMed  Google Scholar 

  18. McGann C, Akoum N, Patel A, Kholmovski E, Revelo P, Damal K, et al. Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ Arrhythm Electrophysiol. 2013. doi:10.1161/CIRCEP.113.000689. This study again confirms the value of contrast enhanced MRI for noninvasive assessment of left atrial fibrosis and correlation with AF ablation outcome.

    PubMed  Google Scholar 

  19. Marrouche NF, Wilber D, Hindricks G, Jais P, Akoum N, Marchlinski F, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA. 2014;31((5):498–506. This is the first multicenter, prospective, observational cohort study describing an independent association of atrial tissue fibrosis estimated by delayed enhancement MRI with likelihood of recurrent arrhythmia following catheter ablation of atrial fibrillation.

    Article  Google Scholar 

  20. Beinart R, Khurram IM, Liu S, Yarmohammadi H, Halperin HR, Bluemke DA, et al. Cardiac magnetic resonance T1 mapping of left atrial myocardium. Heart Rhythm. 2013;10:1325–31. In this study for the first time the usefulness of T1 mapping for detection of left atrial fibrosis is described.

    Article  PubMed  Google Scholar 

  21. Neilan TG, Mongeon FP, Shah RV, Coelho-Filho O, Abbasi SA, Dodson JA, et al. Myocardial extracellular volume expansion and the risk of recurrent atrial fibrillation after pulmonary vein isolation. JACC Cardiovasc Imaging. 2014;7:1–11.

    Article  PubMed  Google Scholar 

  22. Kato R, Lickfett L, Meininger G, Dickfeld T, Wu R, Juang G, et al. Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation. 2003;107:2004–10.

    Article  PubMed  Google Scholar 

  23. Mansour M, Refaat M, Heist EK, Mela T, Cury R, Holmvang G, et al. Three-dimensional anatomy of the left atrium by magnetic resonance angiography: implications for catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2006;17:719–23.

    Article  PubMed  Google Scholar 

  24. Badger TJ, Adjei-Poku YA, Burgon NS, Kalvaitis S, Shaaban A, Sommers DN, et al. Initial experience of assessing esophageal tissue injury and recovery using delayed-enhancement MRI after atrial fibrillation ablation. Circ Arrhythm Electrophysiol. 2009;2:620–5.

    Article  PubMed  Google Scholar 

  25. Badger TJ, Daccarett M, Akoum NW, Adjei-Poku YA, Burgon NS, Haslam TS, et al. Evaluation of left atrial lesions after initial and repeat atrial fibrillation ablation: lessons learned from delayed-enhancement MRI in repeat ablation procedures. Circ Arrhythm Electrophysiol. 2010;3:249–59.

    Article  PubMed Central  PubMed  Google Scholar 

  26. McGann C, Kholmovski E, Blauer J, Vijayakumar S, Haslam T, Cates J, et al. Dark regions of no-reflow on late gadolinium enhancement magnetic resonance imaging result in scar formation after atrial fibrillation ablation. J Am Coll Cardiol. 2011;58:177–85.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Dickfeld T, Kato R, Zviman M, Lai S, Meininger G, Lardo AC, et al. Characterization of radiofrequency ablation lesions with gadolinium-enhanced cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2006;47:370–8.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Dickfeld T, Kato R, Zviman M, Nazarian S, Dong J, Ashikaga H, et al. Characterization of acute and subacute radiofrequency ablation lesions with nonenhanced magnetic resonance imaging. Heart Rhythm. 2007;4:208–14.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Lardo AC, McVeigh ER, Jumrussirikul P, Berger RD, Calkins H, Lima J, et al. Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging. Circulation. 2000;102:698–705.

    Article  CAS  PubMed  Google Scholar 

  30. Badger TJ, Oakes RS, Daccarett M, Burgon NS, Akoum N, Fish EN, et al. Temporal left atrial lesion formation after ablation of atrial fibrillation. Heart Rhythm. 2009;6:161–8.

    Article  PubMed  Google Scholar 

  31. McGann CJ, Kholmovski EG, Oakes RS, Blauer JJ, Daccarett M, Segerson N, et al. New magnetic resonance imaging-based method for defining the extent of left atrial wall injury after the ablation of atrial fibrillation. J Am Coll Cardiol. 2008;52:1263–71.

    Article  PubMed  Google Scholar 

  32. Kolandaivelu A, Lardo AC, Halperin HR. Cardiovascular magnetic resonance guided electrophysiology studies. J Cardiovasc Magn Reson. 2009;11:21.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Schmidt EJ, Reddy VK, Ruskin JN. Nonenhanced magnetic resonance imaging for characterization of acute and subacute radiofrequency ablation lesions. Heart Rhythm. 2007;4:215–7.

    Article  PubMed  Google Scholar 

  34. Vergara GR, Vijayakumar S, Kholmovski EG, Blauer JJ, Guttman MA, Gloschat C, et al. Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla. Heart Rhythm. 2011;8:295–303.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Nordbeck P, Hiller KH, Fidler F, Warmuth M, Burkard N, Nahrendorf M, et al. Feasibility of contrast-enhanced and nonenhanced MRI for intraprocedural and postprocedural lesion visualization in interventional electrophysiology: animal studies and early delineation of isthmus ablation lesions in patients with typical atrial flutter. Circ Cardiovasc Imaging. 2011;4:282–94. This study evaluates contrast-enhanced and nonenhanced MRI for intraprocedural and postprocedural lesion visualization in animals and patients.

    Article  PubMed  Google Scholar 

  36. Kolandaivelu A, Zviman MM, Castro V, Lardo AC, Berger RD, Halperin HR. Noninvasive assessment of tissue heating during cardiac radiofrequency ablation using MRI thermography. Circ Arrhythm Electrophysiol. 2010;3:521–9.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Eitel C, Piorkowski C, Hindricks G, Gutberlet M. Electrophysiology study guided by real-time magnetic resonance imaging. Eur Heart J. 2012;33:1975.

    Article  PubMed  Google Scholar 

  38. Ganesan AN, Selvanayagam JB, Mahajan R, Grover S, Nayyar S, Brooks AG, et al. Mapping and ablation of the pulmonary veins and cavo-tricuspid isthmus with a magnetic resonance imaging-compatible externally irrigated ablation catheter and integrated electrophysiology system. Circ Arrhythm Electrophysiol. 2012;5:1136–42.

    Article  PubMed  Google Scholar 

  39. Gaspar T, Piorkowski C, Gutberlet M, Hindricks G. Three-dimensional real-time MRI-guided intracardiac catheter navigation. Eur Heart J. 2013. doi:10.1093/eurheartj/eht327. In this case report the feasibility of MRI guided active catheter tracking for real-time intracardiac navigation, biatrial electroanatomic mapping and atrioventricular node ablation is evaluated in an animal model.

    PubMed  Google Scholar 

  40. Sommer P, Grothoff M, Eitel C, Gaspar T, Piorkowski C, Gutberlet M, et al. Feasibility of real-time magnetic resonance imaging-guided electrophysiology studies in humans. Europace. 2013;15:101–8. This case series summarizes the feasibility and challenges of performing EP studies under real-time MRI guidance in humans.

    Article  PubMed  Google Scholar 

  41. Peeters JM, Seppenwoolde JH, Bartels LW, Bakker CJ. Development and testing of passive tracking markers for different field strengths and tracking speeds. Phys Med Biol. 2006;51:N127–37.

    Article  CAS  PubMed  Google Scholar 

  42. Piorkowski C, Grothoff M, Gaspar T, Eitel C, Sommer P, Huo Y, et al. Cavotricuspid isthmus ablation guided by real-time magnetic resonance imaging. Circ Arrhythm Electrophysiol. 2013;6:e7–e10. This article for the first time describes successful performance of cavotricuspid isthmus ablation guided by real-time MRI in a human.

    Article  PubMed  Google Scholar 

  43. Susil RC, Yeung CJ, Halperin HR, Lardo AC, Atalar E. Multifunctional interventional devices for MRI: a combined electrophysiology/MRI catheter. Magn Reson Med. 2002;47:594–600.

    Article  PubMed  Google Scholar 

  44. Nazarian S, Kolandaivelu A, Zviman MM, Meininger GR, Kato R, Susil RC, et al. Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies. Circulation. 2008;118:223–9.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Dukkipati SR, Mallozzi R, Schmidt EJ, Holmvang G, d'Avila A, Guhde R, et al. Electroanatomic mapping of the left ventricle in a porcine model of chronic myocardial infarction with magnetic resonance-based catheter tracking. Circulation. 2008;118:853–62.

    Article  PubMed  Google Scholar 

  46. Schmidt EJ, Mallozzi RP, Thiagalingam A, Holmvang G, d'Avila A, Guhde R, et al. Electroanatomic mapping and radiofrequency ablation of porcine left atria and atrioventricular nodes using magnetic resonance catheter tracking. Circ Arrhythm Electrophysiol. 2009;2:695–704.

    Article  PubMed  Google Scholar 

  47. Nordbeck P, Bauer WR, Fidler F, Warmuth M, Hiller KH, Nahrendorf M, et al. Feasibility of real-time MRI with a novel carbon catheter for interventional electrophysiology. Circ Arrhythm Electrophysiol. 2009;2:258–67.

    Article  PubMed  Google Scholar 

  48. Hoffmann BA, Koops A, Rostock T, Mullerleile K, Steven D, Karst R, et al. Interactive real-time mapping and catheter ablation of the cavotricuspid isthmus guided by magnetic resonance imaging in a porcine model. Eur Heart J. 2010;31:450–6.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Ranjan R, Kholmovski EG, Blauer J, Vijayakumar S, Volland NA, Salama ME, et al. Identification and acute targeting of gaps in atrial ablation lesion sets using a real-time magnetic resonance imaging system. Circ Arrhythm Electrophysiol. 2012;5:1130–5.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Grothoff M, Piorkowski C, Eitel C, Gaspar T, Hindricks G, Sommer P, et al. Magnetic resonance imaging guided electrophysiological ablation studies in humans using passive catheter tracking – initial results. Radiology. 2014;27:122671. doi:10.1148/radiol.13122671.

    Google Scholar 

  51. Nordbeck P, Beer M, Kostler H, Ladd ME, Quick HH, Bauer WR, et al. Cardiac catheter ablation under real-time magnetic resonance guidance. Eur Heart J. 2012;33:1977.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Charlotte Eitel reports received modest lecture honoraria from Philips GmbH, UB Healthcare, personal fees from St. Jude Medical.

Gerhard Hindricks received modest lecture honoraria from St. Jude Medical, Biotronik, Medtronic and Biosense and is a member of the St. Jude Medical and Biosense advisory boards.

Matthias Grothoff received modest lecture honoraria from Philips and Siemens Healthcare.

Matthias Gutberlet received modest lecture honoraria from Philips and Siemens Healthcare, and is a member of the Siemens MR advisory board.

Philipp Sommer received modest lecture honoraria by St Jude Medical, and Siemens Healthcare, and is a member of the St. Jude Medical advisory board.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Eitel.

Additional information

This article is part of the Topical Collection on Invasive Electrophysiology and Pacing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eitel, C., Hindricks, G., Grothoff, M. et al. Catheter Ablation Guided by Real-Time MRI. Curr Cardiol Rep 16, 511 (2014). https://doi.org/10.1007/s11886-014-0511-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-014-0511-6

Keywords

Navigation