Skip to main content
Log in

Pharmacogenomics of Anti-platelet and Anti-coagulation Therapy

  • Cardiovascular Genomics (C O'Donnell, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Arterial thrombosis is a major component of vascular disease, especially myocardial infarction (MI) and stroke. Current anti-thrombotic therapies such as warfarin and clopidogrel are effective in inhibiting cardiovascular events; however, there is great inter-individual variability in response to these medications. In recent years, it has been recognized that genetic factors play a significant role in drug response, and, subsequently, common variants in genes responsible for metabolism and drug action have been identified. These discoveries along with new diagnostic targets and therapeutic strategies hold promise for more effective individualized anti-coagulation and anti-platelet therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Shin J. Clinical pharmacogenomics of warfarin and clopidogrel. J Pharm Pract. 2012;25(4):428–38. doi:10.1177/0897190012448310. This paper provides a broad overview of the major alleles involved in warfarin and clopidogrel metabolism while also addressing the clinical implications of pharmacogenomic testing.

    Article  PubMed  Google Scholar 

  2. Agundez JA, Martinez C, Perez-Sala D, Carballo M, Torres MJ, Garcia-Martin E. Pharmacogenomics in aspirin intolerance. Curr Drug Metab. 2009;10(9):998–1008.

    Article  PubMed  CAS  Google Scholar 

  3. Goodman T, Ferro A, Sharma P. Pharmacogenetics of aspirin resistance: a comprehensive systematic review. Br J Clin Pharm. 2008;66(2):222–32. doi:10.1111/j.1365-2125.2008.03183.x.

    Article  Google Scholar 

  4. Faraday N, Becker DM, Becker LC. Pharmacogenomics of platelet responsiveness to aspirin. Pharmacogenomics. 2007;8(10):1413–25. doi:10.2217/14622416.8.10.1413.

    Article  PubMed  CAS  Google Scholar 

  5. Kaminsky LS, Zhang ZY. Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73(1):67–74.

    Article  PubMed  CAS  Google Scholar 

  6. Ansell J, Hirsh J, Poller L, Bussey H, Jacobson A, Hylek E. The pharmacology and management of the vitamin K antagonists: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest. 2004;126(3 Suppl):204S–33S. doi:10.1378/chest.126.3_suppl.204S.

    Article  PubMed  CAS  Google Scholar 

  7. Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. 2011;90(4):625–9. doi:10.1038/clpt.2011.185.

    Article  PubMed  CAS  Google Scholar 

  8. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002;287(13):1690–8.

    Article  PubMed  CAS  Google Scholar 

  9. Gage BF, Eby C, Milligan PE, Banet GA, Duncan JR, McLeod HL. Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Throm Haemost. 2004;91(1):87–94. doi:10.1267/THRO04010087.

    CAS  Google Scholar 

  10. Zhu Y, Shennan M, Reynolds KK, Johnson NA, Herrnberger MR, Valdes Jr R, et al. Estimation of warfarin maintenance dose based on VKORC1 (-1639 G > A) and CYP2C9 genotypes. Clin Chem. 2007;53(7):1199–205. doi:10.1373/clinchem.2006.078139.

    Article  PubMed  CAS  Google Scholar 

  11. Rettie AE, Tai G. The pharmocogenomics of warfarin: closing in on personalized medicine. Mol Interv. 2006;6(4):223–7. doi:10.1124/mi.6.4.8.

    Article  PubMed  CAS  Google Scholar 

  12. Hill CE, Duncan A. Overview of pharmacogenetics in anticoagulation therapy. Clin Lab Med. 2008;28(4):513–24. doi:10.1016/j.cll.2008.09.002.

    Article  PubMed  Google Scholar 

  13. Gage BF, Lesko LJ. Pharmacogenetics of warfarin: regulatory, scientific, and clinical issues. J Thromb Thrombolys. 2008;25(1):45–51. doi:10.1007/s11239-007-0104-y.

    Article  CAS  Google Scholar 

  14. Scott SA, Jaremko M, Lubitz SA, Kornreich R, Halperin JL, Desnick RJ. CYP2C9*8 is prevalent among African-Americans: implications for pharmacogenetic dosing. Pharmacogenomics. 2009;10(8):1243–55. doi:10.2217/pgs.09.71.

    Article  PubMed  CAS  Google Scholar 

  15. Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW. Identification of the gene for vitamin K epoxide reductase. Nature. 2004;427(6974):541–4. doi:10.1038/nature02254.

    Article  PubMed  CAS  Google Scholar 

  16. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352(22):2285–93. doi:10.1056/NEJMoa044503.

    Article  PubMed  CAS  Google Scholar 

  17. Limdi NA, Veenstra DL. Warfarin pharmacogenetics. Pharmacotherapy. 2008;28(9):1084–97. doi:10.1592/phco.28.9.1084.

    Article  PubMed  CAS  Google Scholar 

  18. Li J, Wang S, Barone J, Malone B. Warfarin pharmacogenomics. P T. 2009;34(8):422–7.

  19. Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP, et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation. 2007;116(22):2563–70. doi:10.1161/CIRCULATIONAHA.107.737312.

    Article  PubMed  CAS  Google Scholar 

  20. Sontag TJ, Parker RS. Cytochrome P450 omega-hydroxylase pathway of tocopherol catabolism. Novel mechanism of regulation of vitamin E status. J Biol Chem. 2002;277(28):25290–6. doi:10.1074/jbc.M201466200.

    Article  PubMed  CAS  Google Scholar 

  21. Singh O, Sandanaraj E, Subramanian K, Lee LH, Chowbay B. Influence of CYP4F2 rs2108622 (V433M) on Warfarin Dose Requirement in Asian Patients. Drug Metab Pharmacok. 2011;26(2):130–6. doi:10.2133/dmpk.DMPK-10-RG-080.

    Article  CAS  Google Scholar 

  22. Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, et al. CYP4F2 genetic variant alters required warfarin dose. Blood. 2008;111(8):4106–12. doi:10.1182/blood-2007-11-122010.

    Article  PubMed  CAS  Google Scholar 

  23. Borgiani P, Ciccacci C, Forte V, Sirianni E, Novelli L, Bramanti P, et al. CYP4F2 genetic variant (rs2108622) significantly contributes to warfarin dosing variability in the Italian population. Pharmacogenomics. 2009;10(2):261–6. doi:10.2217/14622416.10.2.261.

    Article  PubMed  CAS  Google Scholar 

  24. Perini JA, Struchiner CJ, Silva-Assuncao E, Suarez-Kurtz G. Impact of CYP4F2 rs2108622 on the stable warfarin dose in an admixed patient cohort. Clin Pharmacol Ther. 2010;87(4):417–20. doi:10.1038/clpt.2009.307.

    Article  PubMed  CAS  Google Scholar 

  25. Wells PS, Majeed H, Kassem S, Langlois N, Gin B, Clermont J, et al. A regression model to predict warfarin dose from clinical variables and polymorphisms in CYP2C9, CYP4F2, and VKORC1: Derivation in a sample with predominantly a history of venous thromboembolism. Thromb Res. 2010;125(6):e259–64. doi:10.1016/j.thromres.2009.11.020.

    Article  PubMed  CAS  Google Scholar 

  26. Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N, et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 2009;5(3):e1000433. doi:10.1371/journal.pgen.1000433.

    Article  PubMed  CAS  Google Scholar 

  27. Cooper GM, Johnson JA, Langaee TY, Feng H, Stanaway IB, Schwarz UI, et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood. 2008;112(4):1022–7. doi:10.1182/blood-2008-01-134247.

    Article  PubMed  CAS  Google Scholar 

  28. Schwarz UI, Ritchie MD, Bradford Y, Li C, Dudek SM, Frye-Anderson A, et al. Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med. 2008;358(10):999–1008. doi:10.1056/NEJMoa0708078.

    Article  PubMed  CAS  Google Scholar 

  29. WARFARIN DOSING. http://www.warfarindosing.org. 2012.

  30. Wang L, McLeod HL, Weinshilboum RM. Genomics and drug response. N Engl J Med. 2011;364(12):1144–53. doi:10.1056/NEJMra1010600.

    Article  PubMed  CAS  Google Scholar 

  31. Ancrenaz V, Daali Y, Fontana P, Besson M, Samer C, Dayer P, et al. Impact of genetic polymorphisms and drug-drug interactions on clopidogrel and prasugrel response variability. Curr Drug Metab. 2010;11(8):667–77.

    Article  PubMed  CAS  Google Scholar 

  32. Richter T, Murdter TE, Heinkele G, Pleiss J, Tatzel S, Schwab M, et al. Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. J Pharmacol Exp Therap. 2004;308(1):189–97. doi:10.1124/jpet.103.056127.

    Article  CAS  Google Scholar 

  33. Savi P, Combalbert J, Gaich C, Rouchon MC, Maffrand JP, Berger Y, et al. The antiaggregating activity of clopidogrel is due to a metabolic activation by the hepatic cytochrome P450-1A. Throm Haemost. 1994;72(2):313–7.

    CAS  Google Scholar 

  34. Turpeinen M, Tolonen A, Uusitalo J, Jalonen J, Pelkonen O, Laine K. Effect of clopidogrel and ticlopidine on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Clin Pharmacol Ther. 2005;77(6):553–9. doi:10.1016/j.clpt.2005.02.010.

    Article  PubMed  CAS  Google Scholar 

  35. Cattaneo M. The platelet P2Y(1)(2) receptor for adenosine diphosphate: congenital and drug-induced defects. Blood. 2011;117(7):2102–12. doi:10.1182/blood-2010-08-263111.

    Article  PubMed  CAS  Google Scholar 

  36. Gum PA, Kottke-Marchant K, Welsh PA, White J, Topol EJ. A prospective, blinded determination of the natural history of aspirin resistance among stable patients with cardiovascular disease. J Am Coll Cardiol. 2003;41(6):961–5.

    Article  PubMed  CAS  Google Scholar 

  37. Gurbel PA, Bliden KP, Hiatt BL, O’Connor CM. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation. 2003;107(23):2908–13. doi:10.1161/01.CIR.0000072771.11429.83.

    Article  PubMed  Google Scholar 

  38. Gurbel PA, Tantry US. Drug insight: Clopidogrel nonresponsiveness. Nat Clin Pract Cardiovasc Med. 2006;3(7):387–95. doi:10.1038/ncpcardio0602.

    Article  PubMed  CAS  Google Scholar 

  39. Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, Alfonso F, Macaya C, Bass TA, et al. Variability in individual responsiveness to clopidogrel: clinical implications, management, and future perspectives. J Am Coll Cardiol. 2007;49(14):1505–16. doi:10.1016/j.jacc.2006.11.044.

    Article  PubMed  CAS  Google Scholar 

  40. O’Donoghue M, Wiviott SD. Clopidogrel response variability and future therapies: clopidogrel: does one size fit all? Circulation. 2006;114(22):e600–6. doi:10.1161/CIRCULATIONAHA.106.643171.

    Article  PubMed  Google Scholar 

  41. Wang TH, Bhatt DL, Topol EJ. Aspirin and clopidogrel resistance: an emerging clinical entity. Eur Heart J. 2006;27(6):647–54. doi:10.1093/eurheartj/ehi684.

    Article  PubMed  CAS  Google Scholar 

  42. Gurbel PA, Bliden KP, Guyer K, Cho PW, Zaman KA, Kreutz RP, et al. Platelet reactivity in patients and recurrent events post-stenting: results of the PREPARE POST-STENTING Study. J Am Coll Cardiol. 2005;46(10):1820–6. doi:10.1016/j.jacc.2005.07.041.

    Article  PubMed  CAS  Google Scholar 

  43. Gurbel PA, Becker RC, Mann KG, Steinhubl SR, Michelson AD. Platelet function monitoring in patients with coronary artery disease. J Am Coll Cardiol. 2007;50(19):1822–34. doi:10.1016/j.jacc.2007.07.051.

    Article  PubMed  CAS  Google Scholar 

  44. Angiolillo DJ, Alfonso F. Platelet function testing and cardiovascular outcomes: steps forward in identifying the best predictive measure. Throm Haemost. 2007;98(4):707–9.

    CAS  Google Scholar 

  45. Bliden KP, DiChiara J, Tantry US, Bassi AK, Chaganti SK, Gurbel PA. Increased risk in patients with high platelet aggregation receiving chronic clopidogrel therapy undergoing percutaneous coronary intervention: is the current antiplatelet therapy adequate? J Am Coll Cardiol. 2007;49(6):657–66. doi:10.1016/j.jacc.2006.10.050.

    Article  PubMed  CAS  Google Scholar 

  46. Buonamici P, Marcucci R, Migliorini A, Gensini GF, Santini A, Paniccia R, et al. Impact of platelet reactivity after clopidogrel administration on drug-eluting stent thrombosis. J Am Coll Cardiol. 2007;49(24):2312–7. doi:10.1016/j.jacc.2007.01.094.

    Article  PubMed  CAS  Google Scholar 

  47. Gurbel PA, Bliden KP, Zaman KA, Yoho JA, Hayes KM, Tantry US. Clopidogrel loading with eptifibatide to arrest the reactivity of platelets: results of the Clopidogrel Loading With Eptifibatide to Arrest the Reactivity of Platelets (CLEAR PLATELETS) study. Circulation. 2005;111(9):1153–9. doi:10.1161/01.CIR.0000157138.02645.11.

    Article  PubMed  CAS  Google Scholar 

  48. Gurbel PA, Antonino MJ, Bliden KP, Dichiara J, Suarez TA, Singla A, et al. Platelet reactivity to adenosine diphosphate and long-term ischemic event occurrence following percutaneous coronary intervention: a potential antiplatelet therapeutic target. Platelets. 2008;19(8):595–604. doi:10.1080/09537100802351065.

    Article  PubMed  CAS  Google Scholar 

  49. Matetzky S, Shenkman B, Guetta V, Shechter M, Beinart R, Goldenberg I, et al. Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction. Circulation. 2004;109(25):3171–5. doi:10.1161/01.CIR.0000130846.46168.03.

    Article  PubMed  CAS  Google Scholar 

  50. Gilard M, Arnaud B, Le Gal G, Abgrall JF, Boschat J. Influence of omeprazol on the antiplatelet action of clopidogrel associated to aspirin. J Throm Haemost JTH. 2006;4(11):2508–9. doi:10.1111/j.1538-7836.2006.02162.x.

    Article  CAS  Google Scholar 

  51. Lau WC, Gurbel PA, Watkins PB, Neer CJ, Hopp AS, Carville DG, et al. Contribution of hepatic cytochrome P450 3A4 metabolic activity to the phenomenon of clopidogrel resistance. Circulation. 2004;109(2):166–71. doi:10.1161/01.CIR.0000112378.09325.F9.

    Article  PubMed  CAS  Google Scholar 

  52. Siller-Matula JM, Lang I, Christ G, Jilma B. Calcium-channel blockers reduce the antiplatelet effect of clopidogrel. J Am Coll Cardiol. 2008;52(19):1557–63. doi:10.1016/j.jacc.2008.07.055.

    Article  PubMed  CAS  Google Scholar 

  53. The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.

    Google Scholar 

  54. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360(4):354–62. doi:10.1056/NEJMoa0809171.

    Article  PubMed  CAS  Google Scholar 

  55. Kim KA, Park PW, Hong SJ, Park JY. The effect of CYP2C19 polymorphism on the pharmacokinetics and pharmacodynamics of clopidogrel: a possible mechanism for clopidogrel resistance. Clin Pharmacol Ther. 2008;84(2):236–42. doi:10.1038/clpt.2008.20.

    Article  PubMed  CAS  Google Scholar 

  56. Umemura K, Furuta T, Kondo K. The common gene variants of CYP2C19 affect pharmacokinetics and pharmacodynamics in an active metabolite of clopidogrel in healthy subjects. J Throm Haemost JTH. 2008;6(8):1439–41. doi:10.1111/j.1538-7836.2008.03050.x.

    Article  CAS  Google Scholar 

  57. Fontana P, Hulot JS, De Moerloose P, Gaussem P. Influence of CYP2C19 and CYP3A4 gene polymorphisms on clopidogrel responsiveness in healthy subjects. J Throm Haemost JTH. 2007;5(10):2153–5. doi:10.1111/j.1538-7836.2007.02722.x.

    Article  CAS  Google Scholar 

  58. Brandt JT, Close SL, Iturria SJ, Payne CD, Farid NA, Ernest 2nd CS, et al. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Throm Haemost JTH. 2007;5(12):2429–36. doi:10.1111/j.1538-7836.2007.02775.x.

    Article  CAS  Google Scholar 

  59. Trenk D, Hochholzer W, Fromm MF, Chialda LE, Pahl A, Valina CM, et al. Cytochrome P450 2C19 681G > A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents. J Am Coll Cardiol. 2008;51(20):1925–34. doi:10.1016/j.jacc.2007.12.056.

    Article  PubMed  CAS  Google Scholar 

  60. Collet JP, Hulot JS, Pena A, Villard E, Esteve JB, Silvain J, et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet. 2009;373(9660):309–17. doi:10.1016/S0140-6736(08)61845-0.

    Article  PubMed  CAS  Google Scholar 

  61. Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E, Meneveau N, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med. 2009;360(4):363–75. doi:10.1056/NEJMoa0808227.

    Article  PubMed  CAS  Google Scholar 

  62. Sibbing D, Stegherr J, Latz W, Koch W, Mehilli J, Dorrler K, et al. Cytochrome P450 2C19 loss-of-function polymorphism and stent thrombosis following percutaneous coronary intervention. Eur Heart J. 2009;30(8):916–22. doi:10.1093/eurheartj/ehp041.

    Article  PubMed  CAS  Google Scholar 

  63. Price MJ, Murray SS, Angiolillo DJ, Lillie E, Smith EN, Tisch RL, et al. Influence of genetic polymorphisms on the effect of high- and standard-dose clopidogrel after percutaneous coronary intervention: the GIFT (Genotype Information and Functional Testing) study. J Am Coll Cardiol. 2012;59(22):1928–37. doi:10.1016/j.jacc.2011.11.068.

    Article  PubMed  CAS  Google Scholar 

  64. Shuldiner AR, O’Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. 2009;302(8):849–57. doi:10.1001/jama.2009.1232.

    Article  PubMed  CAS  Google Scholar 

  65. Dandona S, Roberts R. Personalized cardiovascular medicine: status in 2012. Can J Cardiol. 2012;28(6):693–9. doi:10.1016/j.cjca.2012.08.020.

    Article  PubMed  Google Scholar 

  66. Donohue MM, Tirschwell DL. Implications of pharmacogenetic testing for patients taking warfarin or clopidogrel. Curr Neurol Neurosci. 2011;11(1):52–60. doi:10.1007/s11910-010-0157-8.

    Article  CAS  Google Scholar 

  67. Cayla G, Silvain J, O'Connor SA, Collet JP, Montalescot G. An evidence-based review of current anti-platelet options for STEMI patients. Int J Cardiol. 2012. doi:10.1016/j.ijcard.2012.04.160.

    Google Scholar 

  68. Close SL. Pharmacogenetics and pharmacogenomics of thienopyridines: clinically relevant? Fund Clin Pharmacol. 2012;26(1):19–26. doi:10.1111/j.1472-8206.2011.00983.x.

    Article  CAS  Google Scholar 

  69. Fefer P, Matetzky S. The genetic basis of platelet responsiveness to clopidogrel. A critical review of the literature. Throm Haemost. 2011;106(2):203–10. doi:10.1160/TH11-04-0228.

    Article  CAS  Google Scholar 

  70. Price MJ, Tantry US, Gurbel PA. The influence of CYP2C19 polymorphisms on the pharmacokinetics, pharmacodynamics, and clinical effectiveness of P2Y(12) inhibitors. Rev Cardiovas Med. 2011;12(1):1–12. doi:10.3909/ricm0590.

    Google Scholar 

  71. Jang JS, Cho KI, Jin HY, Seo JS, Yang TH, Kim DK, et al. Meta-analysis of cytochrome P450 2C19 polymorphism and risk of adverse clinical outcomes among coronary artery disease patients of different ethnic groups treated with clopidogrel. Am J Cardiol. 2012;110(4):502–8. doi:10.1016/j.amjcard.2012.04.020.

    Article  PubMed  CAS  Google Scholar 

  72. Mega JL, Simon T, Collet JP, Anderson JL, Antman EM, Bliden K, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA. 2010;304(16):1821–30. doi:10.1001/jama.2010.1543.

    Article  PubMed  CAS  Google Scholar 

  73. Jiang F, Desta Z, Shon JH, Yeo CW, Kim HS, Liu KH, et al. Effects of clopidogrel and itraconazole on the disposition of efavirenz and its hydroxyl-metabolites: exploration of a novel CYP2B6 phenotyping index. Br J Clin Pharm. 2012. doi:10.1111/j.1365-2125.2012.04314.x.

    Google Scholar 

  74. Zou JJ, Xie HG, Chen SL, Tan J, Lin L, Zhao YY, et al. Influence of CYP2C19 loss-of-function variants on the antiplatelet effects and cardiovascular events in clopidogrel-treated Chinese patients undergoing percutaneous coronary intervention. Eur J Clin Pharmacol. 2012. doi:10.1007/s00228-012-1392-5.

    Google Scholar 

  75. Subraja K, Dkhar SA, Priyadharsini R, Ravindra BK, Shewade DG, Satheesh S, et al. Genetic polymorphisms of CYP2C19 influences the response to clopidogrel in ischemic heart disease patients in the South Indian Tamilian population. Eur J Clin Pharmacol. 2012. doi:10.1007/s00228-012-1381-8.

    PubMed  Google Scholar 

  76. Holmes MV, Perel P, Shah T, Hingorani AD, Casas JP. CYP2C19 genotype, clopidogrel metabolism, platelet function, and cardiovascular events: a systematic review and meta-analysis. JAMA. 2011;306(24):2704–14. doi:10.1001/jama.2011.1880.

    Article  PubMed  CAS  Google Scholar 

  77. Shuldiner AR, Vesely MR, Fisch A. CYP2C19 genotype and cardiovascular events. JAMA. 2012;307(14):1482. doi:10.1001/jama.2012.443. author reply 4-5.

    PubMed  CAS  Google Scholar 

  78. Mega JL, Topol EJ, Sabatine MS. CYP2C19 genotype and cardiovascular events. JAMA. 2012;307(14):1482–3. doi:10.1001/jama.2012.444. author reply 4-5.

    PubMed  CAS  Google Scholar 

  79. Siasos G, Tousoulis D, Stefanadis C. CYP2C19 genotype and cardiovascular events. JAMA. 2012;307(14):1483–4. doi:10.1001/jama.2012.445. author reply 4-5.

    PubMed  CAS  Google Scholar 

  80. Johnson JA, Roden DM, Lesko LJ, Ashley E, Klein TE, Shuldiner AR. Clopidogrel: a case for indication-specific pharmacogenetics. Clin Pharmacol Ther. 2012;91(5):774–6. doi:10.1038/clpt.2012.21.

    Article  PubMed  CAS  Google Scholar 

  81. Bhatt DL, Pare G, Eikelboom JW, Simonsen KL, Emison ES, Fox KA, et al. The relationship between CYP2C19 polymorphisms and ischaemic and bleeding outcomes in stable outpatients: the CHARISMA genetics study. Eur Heart J. 2012;33(17):2143–50. doi:10.1093/eurheartj/ehs059.

    Article  PubMed  CAS  Google Scholar 

  82. Pare G, Mehta SR, Yusuf S, Anand SS, Connolly SJ, Hirsh J, et al. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N Engl J Med. 2010;363(18):1704–14. doi:10.1056/NEJMoa1008410.

    Article  PubMed  CAS  Google Scholar 

  83. FDA Drug Safety Communication: Reduced effectiveness of Plavix (clopidogrel) in patients who are poor metabolizers of the drug. http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm203888.htm. 2012.

  84. Holmes Jr DR, Dehmer GJ, Kaul S, Leifer D, O’Gara PT, Stein CM. ACCF/AHA clopidogrel clinical alert: approaches to the FDA “boxed warning”: a report of the American College of Cardiology Foundation Task Force on clinical expert consensus documents and the American Heart Association endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J Am Coll Cardiol. 2010;56(4):321–41. doi:10.1016/j.jacc.2010.05.013.

    Article  PubMed  CAS  Google Scholar 

  85. Roberts JD, Wells GA, Le May MR, Labinaz M, Glover C, Froeschl M, et al. Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial. Lancet. 2012;379(9827):1705–11. doi:10.1016/S0140-6736(12)60161-5.

    Article  PubMed  CAS  Google Scholar 

  86. Roden DM, Shuldiner AR. Responding to the clopidogrel warning by the US food and drug administration: real life is complicated. Circulation. 2010;122(5):445–8. doi:10.1161/CIRCULATIONAHA110.973362.

    Article  PubMed  Google Scholar 

  87. •• Scott SA, Sangkuhl K, Gardner EE, Stein CM, Hulot JS, Johnson JA, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin Pharmacol Ther. 2011;90(2):328–32. doi:10.1038/clpt.2011.132. This reference provides an implementable algorithm for approaching the patient indicated for clopidogrel using evidence established in the literature already, and in the absence of a completed, prospective, controlled, randomized, double-blinded clinical trial.

    Article  PubMed  CAS  Google Scholar 

  88. Barrett JC. Haploview: Visualization and analysis of SNP genotype data. Cold Spring Harb Protoc. 2009;2009(10):pdb ip71. doi:10.1101/pdb.ip71.

    Article  PubMed  Google Scholar 

  89. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L, et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther. 2006;79(1):103–13. doi:10.1016/j.clpt.2005.10.002.

    Article  PubMed  CAS  Google Scholar 

  90. Tiroch KA, Sibbing D, Koch W, Roosen-Runge T, Mehilli J, Schomig A, et al. Protective effect of the CYP2C19 *17 polymorphism with increased activation of clopidogrel on cardiovascular events. Am Heart J. 2010;160(3):506–12. doi:10.1016/j.ahj.2010.06.039.

    Article  PubMed  CAS  Google Scholar 

  91. Bouman HJ, Harmsze AM, van Werkum JW, Breet NJ, Bergmeijer TO, Ten Cate H, et al. Variability in on-treatment platelet reactivity explained by CYP2C19*2 genotype is modest in clopidogrel pretreated patients undergoing coronary stenting. Heart. 2011;97(15):1239–44. doi:10.1136/hrt.2010.220509.

    Article  PubMed  CAS  Google Scholar 

  92. Zabalza M, Subirana I, Sala J, Lluis-Ganella C, Lucas G, Tomas M, et al. Meta-analyses of the association between cytochrome CYP2C19 loss- and gain-of-function polymorphisms and cardiovascular outcomes in patients with coronary artery disease treated with clopidogrel. Heart. 2012;98(2):100–8. doi:10.1136/hrt.2011.227652.

    Article  PubMed  CAS  Google Scholar 

  93. Li Y, Tang HL, Hu YF, Xie HG. The gain-of-function variant allele CYP2C19*17: a double-edged sword between thrombosis and bleeding in clopidogrel-treated patients. J Thromb Haemost. 2012;10(2):199–206. doi:10.1111/j.1538-7836.2011.04570.x.

    Article  PubMed  CAS  Google Scholar 

  94. Sibbing D, Koch W, Gebhard D, Schuster T, Braun S, Stegherr J, et al. Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation. 2010;121(4):512–8.

    Article  PubMed  CAS  Google Scholar 

  95. Wallentin L, James S, Storey RF, Armstrong M, Barratt BJ, Horrow J, et al. Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial. Lancet. 2010;376(9749):1320–8. doi:10.1016/S0140-6736(10)61274-3.

    Article  PubMed  CAS  Google Scholar 

  96. Campo G, Parrinello G, Ferraresi P, Lunghi B, Tebaldi M, Miccoli M, et al. Prospective evaluation of on-clopidogrel platelet reactivity over time in patients treated with percutaneous coronary intervention relationship with gene polymorphisms and clinical outcome. J Am Coll Cardiol. 2011;57(25):2474–83. doi:10.1016/j.jacc.2010.12.047.

    Article  PubMed  CAS  Google Scholar 

  97. Bauer T, Bouman HJ, van Werkum JW, Ford NF, ten Berg JM, Taubert D. Impact of CYP2C19 variant genotypes on clinical efficacy of antiplatelet treatment with clopidogrel: systematic review and meta-analysis. BMJ. 2011;343:d4588. doi:10.1136/bmj.d4588.

    Article  PubMed  Google Scholar 

  98. Tello-Montoliu A, Jover E, Marin F, Bernal A, Lozano ML, Sanchez-Vega B, et al. Influence of CYP2C19 polymorphisms in platelet reactivity and prognosis in an unselected population of non ST elevation acute coronary syndrome. Rev Esp Cardiol (Engl). 2012;65(3):219–26. doi:10.1016/j.recesp.2011.07.013.

    Article  Google Scholar 

  99. Dai ZL, Chen H, Wu XY. Relationship between cytochrome P450 2C19*17 genotype distribution, platelet aggregation and bleeding risk in patients with blood stasis syndrome of coronary artery disease treated with clopidogrel. Zhong Xi Yi Jie He Xue Bao. 2012;10(6):647–54.

    Article  PubMed  Google Scholar 

  100. Harmsze AM, van Werkum JW, Hackeng CM, Ruven HJ, Kelder JC, Bouman HJ, et al. The influence of CYP2C19*2 and *17 on on-treatment platelet reactivity and bleeding events in patients undergoing elective coronary stenting. Pharmacogenet Genomics. 2012;22(3):169–75. doi:10.1097/FPC.0b013e32834ff6e3.

    Article  PubMed  CAS  Google Scholar 

  101. •• Gurbel PA, Tantry US, Shuldiner AR. Letter by Gurbel et al regarding article, "Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement". Circulation. 2010;122(14):e478; author reply e9. doi:122/14/e478 [pii] 10.1161/CIRCULATIONAHA.110.943548. This reference explains the importance of taking CYP2C19*2 status into account when observing the effects of CYP2C19*17 on platelet aggregation and cardiovascular outcomes since the two loci are in linkage disequilibrium.

  102. Taubert D, von Beckerath N, Grimberg G, Lazar A, Jung N, Goeser T, et al. Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther. 2006;80(5):486–501. doi:10.1016/j.clpt.2006.07.007.

    Article  PubMed  CAS  Google Scholar 

  103. Wang XD, Zhang DF, Liu XB, Lai Y, Qi WG, Luo Y, et al. Modified clopidogrel loading dose according to platelet reactivity monitoring in patients carrying ABCB1 variant alleles in patients with clopidogrel resistance. Eur J Intern Med. 2012;23(1):48–53. doi:10.1016/j.ejim.2011.07.016.

    Article  PubMed  CAS  Google Scholar 

  104. Su J, Xu J, Li X, Zhang H, Hu J, Fang R, et al. ABCB1 C3435T Polymorphism and Response to Clopidogrel Treatment in Coronary Artery Disease (CAD) Patients: A Meta-Analysis. PLoS One. 2012;7(10):e46366. doi:10.1371/journal.pone.0046366.

    Article  PubMed  CAS  Google Scholar 

  105. Lewis JP, Fisch AS, Ryan K, O’Connell JR, Gibson Q, Mitchell BD, et al. Paraoxonase 1 (PON1) gene variants are not associated with clopidogrel response. Clin Pharmacol Ther. 2011;90(4):568–74. doi:10.1038/clpt.2011.194.

    Article  PubMed  CAS  Google Scholar 

  106. Mackness B, Mackness MI, Arrol S, Turkie W, Durrington PN. Effect of the molecular polymorphisms of human paraoxonase (PON1) on the rate of hydrolysis of paraoxon. Br J Pharmacol. 1997;122(2):265–8. doi:10.1038/sj.bjp.0701390.

    Article  PubMed  CAS  Google Scholar 

  107. Bouman HJ, Schomig E, van Werkum JW, Velder J, Hackeng CM, Hirschhauser C, et al. Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat Med. 2011;17(1):110–6. doi:10.1038/nm.2281.

    Article  PubMed  CAS  Google Scholar 

  108. Hulot JS, Collet JP, Cayla G, Silvain J, Allanic F, Bellemain-Appaix A, et al. CYP2C19 but not PON1 genetic variants influence clopidogrel pharmacokinetics, pharmacodynamics, and clinical efficacy in post-myocardial infarction patients. Circ Cardiovas Interv. 2011;4(5):422–8. doi:10.1161/CIRCINTERVENTIONS.111.963025.

    Article  CAS  Google Scholar 

  109. Kreutz RP, Nystrom P, Kreutz Y, Miao J, Desta Z, Breall JA, et al. Influence of paraoxonase-1 Q192R and cytochrome P450 2C19 polymorphisms on clopidogrel response. Clin Pharmacol. 2012;4:13–20. doi:10.2147/CPAA.S27822.

    PubMed  CAS  Google Scholar 

  110. Simon T, Steg PG, Becquemont L, Verstuyft C, Kotti S, Schiele F, et al. Effect of paraoxonase-1 polymorphism on clinical outcomes in patients treated with clopidogrel after an acute myocardial infarction. Clin Pharmacol Ther. 2011;90(4):561–7. doi:10.1038/clpt.2011.193.

    Article  PubMed  CAS  Google Scholar 

  111. Verschuren JJ, Boden H, Wessels JA, van der Hoeven BL, Trompet S, Heijmans BT, et al. Value of platelet pharmacogenetics in common clinical practice of patients with ST-segment elevation myocardial infarction. Int J Cardiol. 2012. doi:10.1016/j.ijcard.2012.07.020.

    Google Scholar 

  112. Campo G, Ferraresi P, Marchesini J, Bernardi F, Valgimigli M. Relationship between paraoxonase Q192R gene polymorphism and on-clopidogrel platelet reactivity over time in patients treated with percutaneous coronary intervention. J Throm Haemost JTH. 2011;9(10):2106–8. doi:10.1111/j.1538-7836.2011.04457.x.

    Article  CAS  Google Scholar 

  113. Gong IY, Crown N, Suen CM, Schwarz UI, Dresser GK, Knauer MJ, et al. Clarifying the importance of CYP2C19 and PON1 in the mechanism of clopidogrel bioactivation and in vivo antiplatelet response. Eur Heart J. 2012;33(22):2856–64. doi:10.1093/eurheartj/ehs042.

    Article  PubMed  CAS  Google Scholar 

  114. Wu H, Qian J, Xu J, Sun A, Sun W, Wang Q, et al. Besides CYP2C19, PON1 genetic variant influences post-clopidogrel platelet reactivity in Chinese patients. Int J Cardiol. 2012. doi:10.1016/j.ijcard.2012.08.017.

    Google Scholar 

  115. Pare G, Ross S, Mehta SR, Yusuf S, Anand SS, Connolly SJ, et al. Effect of PON1 Q192R genetic polymorphism on clopidogrel efficacy and cardiovascular events in the Clopidogrel in the Unstable Angina to Prevent Recurrent Events trial and the Atrial Fibrillation Clopidogrel Trial with Irbesartan for Prevention of Vascular Events. Circ Cardiovas Genet. 2012;5(2):250–6. doi:10.1161/CIRCGENETICS.111.961417.

    Article  CAS  Google Scholar 

  116. Mackness B, Mackness MI, Arrol S, Turkie W, Durrington PN. Effect of the human serum paraoxonase 55 and 192 genetic polymorphisms on the protection by high density lipoprotein against low density lipoprotein oxidative modification. FEBS Lett. 1998;423(1):57–60.

    Article  PubMed  CAS  Google Scholar 

  117. Lewis JP, Shuldiner AR. Paraoxonase 1 Q192R variant and clopidogrel efficacy: fact or fiction? Circ Cardiovas Genet. 2012;5(2):153–5. doi:10.1161/CIRCGENETICS.112.962910.

    Article  Google Scholar 

  118. Sibbing D, Koch W, Massberg S, Byrne RA, Mehilli J, Schulz S, et al. No association of paraoxonase-1 Q192R genotypes with platelet response to clopidogrel and risk of stent thrombosis after coronary stenting. Eur Heart J. 2011;32(13):1605–13. doi:10.1093/eurheartj/ehr155.

    Article  PubMed  CAS  Google Scholar 

  119. Szymezak J, Moreau C, Loriot MA, Durand E, Van Viet H, Desnos M, et al. High on-clopidogrel platelet reactivity: genotyping can help to optimize antiplatelet treatment. Throm Res. 2011;128(1):92–5. doi:10.1016/j.thromres.2011.01.012.

    Article  CAS  Google Scholar 

  120. Bura A, Bachelot-Loza C, Ali FD, Aiach M, Gaussem P. Role of the P2Y12 gene polymorphism in platelet responsiveness to clopidogrel in healthy subjects. J Throm Haemost JTH. 2006;4(9):2096–7. doi:10.1111/j.1538-7836.2006.02113.x.

    Article  CAS  Google Scholar 

  121. Staritz P, Kurz K, Stoll M, Giannitsis E, Katus HA, Ivandic BT. Platelet reactivity and clopidogrel resistance are associated with the H2 haplotype of the P2Y12-ADP receptor gene. Int J Cardiol. 2009;133(3):341–5. doi:10.1016/j.ijcard.2007.12.118.

    Article  PubMed  Google Scholar 

  122. Namazi S, Kojuri J, Khalili A, Azarpira N. The impact of genetic polymorphisms of P2Y12, CYP3A5 and CYP2C19 on clopidogrel response variability in Iranian patients. Biochem Pharmacol. 2012;83(7):903–8. doi:10.1016/j.bcp.2012.01.003.

    Article  PubMed  CAS  Google Scholar 

  123. Simon T, Bhatt DL, Bergougnan L, Farenc C, Pearson K, Perrin L, et al. Genetic polymorphisms and the impact of a higher clopidogrel dose regimen on active metabolite exposure and antiplatelet response in healthy subjects. Clin Pharmacol Ther. 2011;90(2):287–95. doi:10.1038/clpt.2011.127.

    Article  PubMed  CAS  Google Scholar 

  124. Zhu HJ, Patrick KS, Yuan HJ, Wang JS, Donovan JL, DeVane CL, et al. Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis. Am J Hum Genet. 2008;82(6):1241–8. doi:10.1016/j.ajhg.2008.04.015.

    Article  PubMed  CAS  Google Scholar 

  125. Lewis JP, Horenstein RB, Ryan K, O'Connell JR, Gibson Q, Mitchell BD, et al. The functional G143E variant of carboxylesterase 1 is associated with increased clopidogrel active metabolite levels and greater clopidogrel response. Pharmacogenet Genom. 2012. doi:10.1097/FPC.0b013e32835aa8a2.

    Google Scholar 

  126. Abell LM, Liu EC. Dissecting the activation of thienopyridines by cytochromes P450 using a pharmacodynamic assay in vitro. J Pharmacol Exp Therap. 2011;339(2):589–96. doi:10.1124/jpet.111.184895.

    Article  CAS  Google Scholar 

  127. Kazui M, Nishiya Y, Ishizuka T, Hagihara K, Farid NA, Okazaki O, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos. 2010;38(1):92–9. doi:10.1124/dmd.109.029132.

    Article  PubMed  CAS  Google Scholar 

  128. Sangkuhl K, Klein TE, Altman RB. Clopidogrel pathway. Pharmacogenet Genom. 2010;20(7):463–5. doi:10.1097/FPC.0b013e3283385420.

    CAS  Google Scholar 

  129. Gremmel T, Kopp CW, Seidinger D, Koppensteiner R, Panzer S, Sunder-Plassmann R, et al. Differential impact of cytochrome 2C9 allelic variants on clopidogrel-mediated platelet inhibition determined by five different platelet function tests. Int J Cardiol. 2011. doi:10.1016/j.ijcard.2011.10.010.

    Google Scholar 

  130. Harmsze A, van Werkum JW, Bouman HJ, Ruven HJ, Breet NJ, Ten Berg JM, et al. Besides CYP2C19*2, the variant allele CYP2C9*3 is associated with higher on-clopidogrel platelet reactivity in patients on dual antiplatelet therapy undergoing elective coronary stent implantation. Pharmacogenet Genom. 2010;20(1):18–25. doi:10.1097/FPC.0b013e328333dafe.

    Article  CAS  Google Scholar 

  131. Kassimis G, Davlouros P, Xanthopoulou I, Stavrou EF, Athanassiadou A, Alexopoulos D. CYP2C19*2 and other genetic variants affecting platelet response to clopidogrel in patients undergoing percutaneous coronary intervention. Throm Res. 2012;129(4):441–6. doi:10.1016/j.thromres.2011.07.022.

    Article  CAS  Google Scholar 

  132. Zevin S, Benowitz NL. Drug interactions with tobacco smoking. An update. Clin Pharmacokinet. 1999;36(6):425–38.

    Article  PubMed  CAS  Google Scholar 

  133. Zhou SF, Yang LP, Zhou ZW, Liu YH, Chan E. Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2. AAPS J. 2009;11(3):481–94. doi:10.1208/s12248-009-9127-y.

    Article  PubMed  CAS  Google Scholar 

  134. Park KW, Kang J, Park JJ, Yang HM, Lee HY, Kang HJ, et al. Amlodipine, clopidogrel and CYP3A5 genetic variability: effects on platelet reactivity and clinical outcomes after percutaneous coronary intervention. Heart. 2012;98(18):1366–72. doi:10.1136/heartjnl-2012-301892.

    Article  PubMed  CAS  Google Scholar 

  135. Momary KM, Dorsch MP, Bates ER. Genetic causes of clopidogrel nonresponsiveness: which ones really count? Pharmacotherapy. 2010;30(3):265–74. doi:10.1592/phco.30.3.265.

    Article  PubMed  CAS  Google Scholar 

  136. ICPC - International Clopidogrel Pharmacogenomics Consortium. http://www.pharmgkb.org/page/icpc. 2012.

  137. Gordon AS, Smith JD, Xiang Q, Metzker ML, Gibbs RA, Mardis ER, Nickerson DA, Fulton RS, Scherer SE. PGRNseq: a new sequencing-based platform for high-throughput pharmacogenomic implementation and discovery; (Program #244). Presented at the 62nd Annual Meeting of The American Society of Human Genetics, November 8, 2012 in San Francisco, CA.

  138. Fisch AS, Lewis JP, Yerges-Armstrong LM, O’Connell JR, Mitchell BD, Horenstein RB, Ambulos N, Ryan K, Gibson Q, Shelton J, Shuldiner AR. Novel association of dual anti-platelet drug response with a functional variant in PPARG; Presented at the 62nd Annual Meeting of The American Society of Human Genetics, November 8, 2012 in San Francisco, CA.

Download references

Acknowledgment

AS Fisch and CG Perry are MD/PhD students supported along with AR Shuldiner by NIH U01HL105198. SH Stephens is supported by NIH K12CA126849. This work is also supported by NIH HHSN268200800003C (RB Horenstein) and NIH U01GM074518.

Conflict of Interest

Adam S. Fisch declares that he has no conflict of interest.

Christina G. Perry declares that she has no conflict of interest.

Sarah H. Stephens declares that she has no conflict of interest.

Richard B. Horenstein declares that he has no conflict of interest.

Alan R. Shuldiner is a consultant for USDS, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Shuldiner.

Additional information

This article is part of the Topical Collection on Cardiovascular Genomics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisch, A.S., Perry, C.G., Stephens, S.H. et al. Pharmacogenomics of Anti-platelet and Anti-coagulation Therapy. Curr Cardiol Rep 15, 381 (2013). https://doi.org/10.1007/s11886-013-0381-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0381-3

Keywords

Navigation