Skip to main content
Log in

Atherosclerotic plaque imaging by carotid MRI

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Carotid MRI (CMRI) is a valuable technique to examine the state of carotid atherosclerotic plaque in vivo. This article examines CMRI’s current and future directions. These include technical requirements for implementing CMRI, as well as applications of CMRI, such as visualizing lesion types, plaque components, dynamic contrast imaging, comparison of stenosis and other measures of plaque burden, and ongoing knowledge gained from serial studies. Also, future directions of CMRI and how CMRI techniques can be transitioned into clinical practice are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Davies MJ, Thomas AC: Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 1985, 53:363–373.

    Article  PubMed  CAS  Google Scholar 

  2. Falk E: Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 1983, 50:127–134.

    Article  PubMed  CAS  Google Scholar 

  3. Falk E: Morphologic features of unstable atherothrombotic plaques underlying acute coronary syndromes. Am J Cardiol 1989, 63:114E–120E.

    Article  PubMed  CAS  Google Scholar 

  4. Redgrave JN, Lovett JK, Gallagher PJ, et al.: Histological assessment of 526 symptomatic carotid plaques in relation to the nature and timing of ischemic symptoms: the Oxford plaque study. Circulation 2006, 113:2320–2328.

    Article  PubMed  CAS  Google Scholar 

  5. Carr S, Farb A, Pearce WH, et al.: Atherosclerotic plaque rupture in symptomatic carotid artery stenosis. J Vasc Surg 1996, 23:755–766.

    Article  PubMed  CAS  Google Scholar 

  6. Underhill HR, Yarnykh VL, Hatsukami TS, et al.: Carotid plaque morphology and composition: initial comparison between 1.5- and 3.0-T magnetic field strengths. Radiology 2008, 248:550–560.

    Article  PubMed  Google Scholar 

  7. Hayes CE, Mathis CM, Yuan C: Surface coil phased arrays for high-resolution imaging of the carotid arteries. J Magn Reson Imaging 1996, 6:109–112.

    Article  PubMed  CAS  Google Scholar 

  8. Scholnick J, Yarnykh V, Balu N, et al.: An improved phased-array surface coil for carotid vessel wall imaging. Presented at the International Society for Magnetic Resonance in Medicine Meeting. Berlin, Germany; May 19–25, 2007.

  9. Edelman RR, Chien D, Kim D: Fast selective black blood MR imaging. Radiology 1991, 181:655–660.

    PubMed  CAS  Google Scholar 

  10. Yarnykh VL, Yuan C: Simultaneous outer volume and blood suppression by quadruple inversion-recovery. Magn Reson Med 2006, 55:1083–1092.

    Article  PubMed  Google Scholar 

  11. Yuan C, Beach KW, Smith LH Jr, et al.: Measurement of atherosclerotic carotid plaque size in vivo using high resolution magnetic resonance imaging. Circulation 1998, 98:2666–2671.

    PubMed  CAS  Google Scholar 

  12. Yarnykh VL, Yuan C: T1-insensitive flow suppression using quadruple inversion-recovery. Magn Reson Med 2002, 48:899–905.

    Article  PubMed  Google Scholar 

  13. Trivedi RA, U-King-Im JM, Graves MJ, et al.: MRI-derived measurements of fibrous-cap and lipid-core thickness: the potential for identifying vulnerable carotid plaques in vivo. Neuroradiology 2004, 46:738–743.

    Article  PubMed  Google Scholar 

  14. Saam T, Kerwin WS, Chu B, et al.: Sample size calculation for clinical trials using magnetic resonance imaging for the quantitative assessment of carotid atherosclerosis. J Cardiovasc Magn Reson 2005, 7:799–808.

    Article  PubMed  Google Scholar 

  15. Takaya N, Yuan C, Chu B, et al.: Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Circulation 2005, 111:2768–2775.

    Article  PubMed  Google Scholar 

  16. Yuan C, Lin E, Millard J, et al.: Closed contour edge detection of blood vessel lumen and outer wall boundaries in black-blood MR images. Magn Reson Imaging 1999, 17:257–266.

    Article  PubMed  CAS  Google Scholar 

  17. Han C, Hatsukami TS, Hwang JN, et al.: A fast minimal path active contour model. IEEE Trans Image Process 2001, 10:865–873.

    Article  Google Scholar 

  18. Han C, Kerwin WS, Hatsukami TS, et al.: Detecting objects in image sequences using rule-based control in an active contour model. IEEE Trans Biomed Eng 2003, 50:705–710.

    Article  Google Scholar 

  19. Ladak HM, Thomas JB, Mitchell JR, et al.: A semi-automatic technique for measurement of arterial wall from black blood MRI. Med Phys 2001, 28:1098–1107.

    Article  PubMed  CAS  Google Scholar 

  20. Kerwin WS, Han C, Miller ZE, et al.: Methods for quantitative analysis of carotid atherosclerotic plaque via MRI [abstract]. Radiology 2002, 225(P):181.

    Google Scholar 

  21. Yuan C, Mitsumori LM, Ferguson MS, et al.: In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 2001, 104:2051–2056.

    Article  PubMed  CAS  Google Scholar 

  22. Chu B, Kampschulte A, Ferguson MS, et al.: Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study. Stroke 2004, 35:1079–1084.

    Article  PubMed  Google Scholar 

  23. Kampschulte A, Ferguson MS, Kerwin WS, et al.: Differentiation of intraplaque versus juxtaluminal hemorrhage/thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging. Circulation 2004, 110:3239–3244.

    Article  PubMed  CAS  Google Scholar 

  24. Mitsumori LM, Hatsukami TS, Ferguson MS, et al.: In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques. J Magn Reson Imaging 2003, 17:410–420.

    Article  PubMed  Google Scholar 

  25. Cai J, Hatsukami TS, Ferguson MS, et al.: In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation 2005, 112:3437–3444.

    Article  PubMed  Google Scholar 

  26. Saam T, Ferguson MS, Yarnykh VL, et al.: Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol 2005, 25:234–239.

    Article  PubMed  CAS  Google Scholar 

  27. Stary HC, Chandler AB, Glagov S, et al.: A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb 1994, 14:840–856.

    PubMed  CAS  Google Scholar 

  28. Stary HC, Chandler AB, Glagov S, et al.: A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1994, 89:2462–2478.

    PubMed  CAS  Google Scholar 

  29. Stary HC, Chandler AB, Dinsmore RE, et al.: A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995, 92:1355–1374.

    PubMed  CAS  Google Scholar 

  30. Cai JM, Hatsukami TS, Ferguson MS, et al.: Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 2002, 106:1368–1373.

    Article  PubMed  Google Scholar 

  31. Barnett HJ, Taylor DW, Eliasziw M, et al.: Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med 1998, 339:1415–1425.

    Article  PubMed  CAS  Google Scholar 

  32. Falk E, Shah PK, Fuster V: Coronary plaque disruption. Circulation 1995, 92:657–671.

    PubMed  CAS  Google Scholar 

  33. Saam T, Underhill HR, Chu B, et al.: Prevalence of American Heart Association type VI carotid atherosclerotic lesions identified by magnetic resonance imaging for different levels of stenosis as measured by duplex ultrasound. J Am Coll Cardiol 2008, 51:1014–1021.

    Article  PubMed  Google Scholar 

  34. Wasserman BA, Wityk RJ, Trout HH 3rd, et al.: Low-grade carotid stenosis: looking beyond the lumen with MRI. Stroke 2005, 36:2504–2513.

    Article  PubMed  Google Scholar 

  35. Benes V, Netuka D, Mandys V, et al.: Comparison between degree of carotid stenosis observed at angiography and in histological examination. Acta Neurochir (Wien) 2004, 146:671–677.

    Article  CAS  Google Scholar 

  36. Nissen SE, Tuzcu EM, Libby P, et al.: Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA 2004, 292:2217–2225.

    Article  PubMed  CAS  Google Scholar 

  37. Saam T, Yuan C, Chu B, et al.: Predictors of carotid atherosclerotic plaque progression as measured by noninvasive magnetic resonance imaging. Atherosclerosis 2007, 194:e34–e42.

    Article  PubMed  CAS  Google Scholar 

  38. Underhill HR, Yuan C, Terry JG, et al.: Differences in carotid arterial morphology and composition between individuals with and without obstructive coronary artery disease: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2008, 10:31.

    Article  PubMed  Google Scholar 

  39. Yuan C, Zhang SX, Polissar NL, et al.: Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 2002, 105:181–185.

    Article  PubMed  Google Scholar 

  40. Saam T, Cai J, Ma L, et al.: Comparison of symptomatic and asymptomatic atherosclerotic carotid plaque features with in vivo MR imaging. Radiology 2006, 240:464–472.

    Article  PubMed  Google Scholar 

  41. Trivedi RA, Mallawarachi C, U-King-Im JM, et al.: Identifying inflamed carotid plaques using in vivo USPIOenhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol 2006, 26:1601–1606.

    Article  PubMed  CAS  Google Scholar 

  42. Howarth SP, Tang TY, Trivedi R, et al.: Utility of USPIO-enhanced MR imaging to identify inflammation and fibrous cap: A comparison of symptomatic and asymptomatic individuals. Eur J Radiol 2008 Mar 18 (Epub ahead of print).

  43. Kerwin WS, O’Brien KD, Ferguson MS, et al.: Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology 2006, 241:459–468.

    Article  PubMed  Google Scholar 

  44. Adams GJ, Greene J, Vick GW 3rd, et al.: Tracking regression and progression of atherosclerosis in human carotid arteries using high-resolution magnetic resonance imaging. Magn Reson Imaging 2004, 22:1249–1258.

    Article  PubMed  Google Scholar 

  45. Chu B, Zhao XQ, Saam T, et al.: Feasibility of in vivo, multicontrast-weighted MR imaging of carotid atherosclerosis for multicenter studies. J Magn Reson Imaging 2005, 21:809–817.

    Article  PubMed  Google Scholar 

  46. Takaya N, Yuan C, Chu B, et al.: Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI—initial results. Stroke 2006, 37:818–823.

    Article  PubMed  Google Scholar 

  47. Altaf N, Daniels L, Morgan PS, et al.: Detection of intraplaque hemorrhage by magnetic resonance imaging in symptomatic patients with mild to moderate carotid stenosis predicts recurrent neurological events. J Vasc Surg 2008, 47:337–342.

    Article  PubMed  Google Scholar 

  48. Zhao XQ, Yuan C, Hatsukami TS, et al.: Effects of prolonged intensive lipid-lowering therapy on the characteristics of carotid atherosclerotic plaques in vivo, by MRI: a case-control study. Arterioscler Thromb Vasc Biol 2001, 21:1623–1629.

    Article  PubMed  CAS  Google Scholar 

  49. Underhill HR, Yuan C, Zhao XQ, et al.: Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients: a high-resolution magnetic resonance imaging trial. Am Heart J 2008, 155:584.e1–584.e8.

    Article  Google Scholar 

  50. Corti R, Fuster V, Fayad ZA, et al.: Effects of aggressive versus conventional lipid-lowering therapy by simvastatin on human atherosclerotic lesions: a prospective, randomized, double-blind trial with high-resolution magnetic resonance imaging. J Am Coll Cardiol 2005, 46:106–112.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Miller, Z.E. & Yuan, C. Atherosclerotic plaque imaging by carotid MRI. Curr Cardiol Rep 11, 70–77 (2009). https://doi.org/10.1007/s11886-009-0011-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-009-0011-2

Keywords

Navigation