Skip to main content

Advertisement

Log in

Advances in MRI tagging techniques for determining regional myocardial strain

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

MRI of the heart with magnetization tagging provides a potentially useful new way to assess cardiac mechanical function, through revealing the local motion of otherwise indistinguishable portions of the heart wall. Although still an evolving area, tagged cardiac MRI is already able to provide novel quantitative information on cardiac function. Exploiting this potential requires developing tailored methods for both imaging and image analysis. In this article, we review some of the progress that has been made in developing imaging methods for tagged cardiac MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Gwathmey JK, Briggs GM, Allen PD: Heart Failure: Basic Science and Clinical Aspects. New York: Marcel-Dekker; 1983.

    Google Scholar 

  2. Cohn JN: Structural basis for heart failure. Ventricular remodeling and its pharmacological inhibition. Circulation 1995, 91:2504–2507.

    PubMed  CAS  Google Scholar 

  3. Zerhouni EA, Parish DM, Rogers WJ, et al.: Human heart: tagging with MR imaging--a method for noninvasive assessment of myocardial motion. Radiology 1988, 169:59–63.

    PubMed  CAS  Google Scholar 

  4. Axel L, Dougherty L: MR imaging of motion with spatial modulation of magnetization. Radiology 1989, 171:841–845.

    PubMed  CAS  Google Scholar 

  5. Axel L, Dougherty L: Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology 1989, 172:349–350.

    PubMed  CAS  Google Scholar 

  6. Guttman MA, Zerhouni EA, McVeigh ER: Analysis and visualization of cardiac function from MR images. IEEE Comp Graph Appl 1997, 17:30–38.

    Article  Google Scholar 

  7. Axel L, Montillo A, Kim D: Tagged magnetic resonance imaging of the heart: a survey. Med Image Anal 2005, 9:376–393.

    Article  PubMed  Google Scholar 

  8. Young AA, Axel L: Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization--a model-based approach. Radiology 1992, 185:241–247.

    PubMed  CAS  Google Scholar 

  9. Haber I, Metaxas DN, Axel L: Three-dimensional motion reconstruction and analysis of the right ventricle using tagged MRI. Med Image Anal 2000, 4:335–355.

    Article  PubMed  CAS  Google Scholar 

  10. Dougherty L, Asmuth JC, Blom AS, et al.: Validation of an optical flow method for tag displacement estimation. IEEE Trans Med Imaging 1999, 18:359–363.

    Article  PubMed  CAS  Google Scholar 

  11. Osman N, Kerwin W, McVeigh ER, Prince J: Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Technical Report JHU/ECE 99-3. Baltimore: Johns Hopkins University; 1999.

    Google Scholar 

  12. Petitjean C, Rougon N, Cluzel P: Assessment of myocardial function: a review of quantification methods and results using tagged MRI. J Cardiovasc Magn Reson 2005, 7:501–516. This paper provides an overview of the strain results from various tagged MRI techniques. A feel for the variability in circumferential, radial and longitudinal strain calculations can be obtained by reading this review paper.

    PubMed  Google Scholar 

  13. Kraitchman DL, Wilke N, Hexeberg E, et al.: Myocardial perfusion and function in dogs with moderate coronary stenosis. Magn Reson Med 1996, 35:771–780.

    Article  PubMed  CAS  Google Scholar 

  14. Kuijpers D, Ho KY, van Dijkman PR, et al.: Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging. Circulation 2003, 107:1592–1597.

    Article  PubMed  Google Scholar 

  15. Kramer CM, Lima JA, Reichek N, et al.: Regional differences in function within noninfarcted myocardium during left ventricular remodeling. Circulation 1993, 88:1279–1288.

    PubMed  CAS  Google Scholar 

  16. Gotte MJ, van Rossum AC, Twisk JWR, et al.: Quantification of regional contractile function after infarction: strain analysis superior to wall thickening analysis in discriminating infarct from remote myocardium. J Am Coll Cardiol 2001, 37:808–817.

    Article  PubMed  CAS  Google Scholar 

  17. Young AA, Kramer CM, Ferrari VA, et al.: Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation 1994, 90:854–867.

    PubMed  CAS  Google Scholar 

  18. McVeigh ER, Atalar E: Cardiac tagging with breath-hold cine MRI. Magn Reson Med 1992, 28:318–327.

    Article  PubMed  CAS  Google Scholar 

  19. Tang C, McVeigh ER, Zerhouni EA: Multi-shot EPI for improvement of myocardial tag contrast: comparison with segmented SPGR. Magn Reson Med 1995, 33:443–447.

    Article  PubMed  CAS  Google Scholar 

  20. Epstein FH, Wolff SD, Arai AE: Segmented k-space fast cardiac imaging using an echo-train readout. Magn Reson Med 1999, 41:609–613.

    Article  PubMed  CAS  Google Scholar 

  21. Ryf S, Kissinger K, Spiegel MA, et al.: Spiral MR myocardial tagging. Magn Reson Med 2004, 51:237–242.

    Article  PubMed  Google Scholar 

  22. Peters DC, Epstein FH, McVeigh ER: Myocardial wall tagging with undersampled projection reconstruction. Magn Reson Med 2001, 45:562–567.

    Article  PubMed  CAS  Google Scholar 

  23. Herzka DA, Guttman MA, McVeigh ER: Myocardial tagging with SSFP. Magn Reson Med 2003, 49:329–340. This paper outlined the first implementation of SSFP for performing myocardial tagging. It lists the various CNR and SNR issues related to SSFP tagging.

    Article  PubMed  Google Scholar 

  24. Zwanenburg JJ, Kuijer JP, Marcus JT, Heethaar RM: Steadystate free precession with myocardial tagging: CSPAMM in a single breathhold. Magn Reson Med 2003, 49:722–730.

    Article  PubMed  Google Scholar 

  25. Herzka DA, Kellman P, Aletras AH, et al.: Multishot EPISSFP in the heart. Magn Reson Med 2002, 47:655–664.

    Article  PubMed  Google Scholar 

  26. Pai VM, Axel L, Kellman P: Phase train approach for very high temporal resolution cardiac imaging. J Cardiovasc Magn Reson 2005, 7:98–99.

    Google Scholar 

  27. Sodickson DK, Manning WJ: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997, 38:591–603.

    Article  PubMed  CAS  Google Scholar 

  28. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P: SENSE: Sensitivity encoding for fast MRI. Magn Reson Med 1999, 42:952–962.

    Article  PubMed  CAS  Google Scholar 

  29. Blaimer M, Breuer F, Mueller M, et al.: SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging 2004, 15:223–236. This paper provides a review of the various parallel imaging techniques. It provides guidance in deciding the type of parallel imaging approaches that are best suited for dynamic imaging, such as for tagged cardiac imaging.

    Article  PubMed  Google Scholar 

  30. Kellman P, McVeigh E: Ghost artifact cancellation using phased array processing. Magn Reson Med 2001, 46:335–343.

    Article  PubMed  CAS  Google Scholar 

  31. Kellman P, Epstein FH, McVeigh ER: Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 2001, 45:846–852.

    Article  PubMed  CAS  Google Scholar 

  32. Griswold MA, Jakob PM, Heidemann RM, et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002, 47:1202–1210.

    Article  PubMed  Google Scholar 

  33. Madore B, Glover GH, Pelc NJ: Unaliasing by fourierencoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med 1999, 42:813–828.

    Article  PubMed  CAS  Google Scholar 

  34. Gutberlet M, Schwinge K, Freyhardt P, et al.: Influence of high magnetic field strengths and parallel acquisition strategies on image quality in cardiac 2D CINE magnetic resonance imaging: comparison of 1.5 T vs. 3.0 T. Eur Radiol 2005, 15:1586–1597.

    Article  PubMed  Google Scholar 

  35. Dornier C, Ivancevic M, Lecoq G, et al.: Assessment of the left ventricle ejection fraction by MRI tagging: comparisons with cine MRI and coronary angiography. Proceedings of the 10th Annual Meeting of the International Society for Magnetic Resonance in Medicine: Honolulu; May 18–24, 2002:1680.

  36. Moses D, Axel L: Quantification of the curvature and shape of the interventricular septum. Magn Reson Med 2004, 52:154–163.

    Article  PubMed  Google Scholar 

  37. Park K, Metaxas D, Axel L: A finite element model for functional analysis of 4D cardiac-tagged MR images. In Proceedings of Medical Image Computing and Computer-Assisted Intervention—MICCAI 2003: 6th International Conference, Montréal, Canada. November 15–18, 2003. Proceedings. Edited by Ellis RE and Peters TM. New York: Springer; 2003:491–498.

    Google Scholar 

  38. Qian Z, Montillo A, Metaxas D, Axel L: Segmenting cardiac MRI tagging lines using Gabor filter banks.Proceedings of International Conference of the Engineering in Medicine and Biology Society. Cancun, Mexico; September 17–21, 2003:630–633.

  39. Guttman M, Prince J, McVeigh E: Tag and contour detection in tagged MR images of the left ventricle. IEEE Trans Med Imag 1994, 13:74–88.

    Article  Google Scholar 

  40. Amini A, Chen Y, Curwen R, et al.: Coupled B-snake grids and constrained thin-plate splines for analysis of 2D tissue deformations from tagged MRI. IEEE Trans Med Imag 1998, 17:344–356.

    Article  CAS  Google Scholar 

  41. Osman N, Kerwin W, McVeigh E, Prince J: Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med 1999, 42:1048–1060.

    Article  PubMed  CAS  Google Scholar 

  42. Park J, Metaxas D, Young A, Axel L: Deformable models with parameter functions for cardiac motion analysis. IEEE Trans Med Imag 1996, 15:278–289.

    Article  Google Scholar 

  43. Declerck J, Ayache N, McVeigh E: Use of a 4D planispheric transformation for the tracking and the analysis of LV motion with tagged MR images. In SPIE Medical Imaging, vol 3660. San Diego; 1999. Accessible online at http://www-sop.inria.fr/rapports/sophia/RR-3535.html

  44. Hu Z, Metaxis D, Axel L: In vivo strain and stress estimation of the heart left and right ventricles from MRI images. Med Image Anal 2003, 7:435–444.

    Article  PubMed  Google Scholar 

  45. Augenstein K, Young A: Finite element modeling for three-dimensional motion reconstruction and analysis. In Measurement of Cardiac Deformations from MRI: Physical and Mathematical Models. Edited by Amini A and Prince J. Dordrecht: Kluwer Academic Publishers; 2001.

    Google Scholar 

  46. Delingette H: Electro-mechanical modeling of the right and left ventricles for cardiac image analysis. Proceedings of the Center for Discreet Mathematics and Theoreetical Computer Science Workshop. Piscataway, NJ: Rutgers University; 2003.

    Google Scholar 

  47. McQueen D, Peskin C: Heart simulation by an immersed boundary method with formal second-order accuracy and reduced numerical viscosity: Mechanics for a New Millennium. Proceedings of the International Conference on Theoretical and Applied Mechanics (ICTAM). Edited by Aref H and Phillips JW. Dordrecht: Kluwer Academic Publishers; 2001.

    Google Scholar 

  48. Kraitchman D, Young A, Chang C, Axel L: Semi-automated tracking of myocardial motion in MR tagged images. IEEE Trans Med Imag 1995, 14:422–433.

    Article  Google Scholar 

  49. Amini A, Prince J: Measurement of Cardiac Deformations from MRI: Physical and Mathematical Models. Dordrecht: Kluwer Academic Publishers; 2001. This book provides an overview of the various techniques that have been developed for converting the tagged MRI data to wall motion, strain, and shear parameters.

    Google Scholar 

  50. Nagel E, Stuber M, Burkhard B, et al.: Cardiac rotation and relaxation in patients with aortic valve stenosis. Eur Heart J 2000, 21:582–589.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Axel PhD, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pai, V.M., Axel, L. Advances in MRI tagging techniques for determining regional myocardial strain. Curr Cardiol Rep 8, 53–58 (2006). https://doi.org/10.1007/s11886-006-0011-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-006-0011-4

Keywords

Navigation