Skip to main content

Advertisement

Log in

Treatment of dyslipidemia in children and adolescents

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

The early lesions of atherosclerosis begin in childhood, and are related to antecedent cardiovascular disease risk factors. Environmental and genetic factors such as diet, obesity, exercise, and certain inherited dyslipidemias influence the progression of such lesions. The identification of youth at risk for atherosclerosis includes an integrated assessment of these predisposing factors. Treatment starts with a diet low in total and saturated fat and cholesterol, the use of water-soluble fiber and plant sterols, weight control, and exercise. Drug therapy, for example, with inhibitors of hydroxymethylglutaryl CoA reductase, bile acid sequestrants, and cholesterol absorption inhibitors, can be considered in those with a positive family history of premature coronary artery disease and a low-density lipoprotein cholesterol above 160 mg/dL, after dietary and hygienic measures. Candidates for drug therapy often include those with familial hypercholesterolemia, familial combined hyperlipidemia, the metabolic syndrome, polycystic ovarian syndrome, type I diabetes, and the nephrotic syndrome. We review the safety and efficacy of dietary and drug therapy, and propose an updated diagnostic and therapeutic algorithm that includes the metabolic syndrome. The early identification and treatment of youth with dyslipidemias is likely to retard the atherosclerotic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. National Cholesterol Education Program (NCEP): Highlights of the report of the Expert Panel on Blood Cholesterol Levels in Children and Adolescents. Pediatrics 1992, 89:495–501.

    Google Scholar 

  2. National Cholesterol Education Program: Report of the Expert Panel on Blood Cholesterol Levels in Children and Adolescents. Pediatrics 89:525–584.

  3. Clauss SB, Kwiterovich PO: Long-term safety and efficacy of low-fat diets in children and adolescents. Minerva Pediatr 2002, 54:305–313.

    PubMed  CAS  Google Scholar 

  4. Clauss SB, Kwiterovich PO: Genetic disorders of lipoprotein transport in children. Prog Ped Card 2003, 17:123–133.

    Article  Google Scholar 

  5. Knipscheer HC, Boelen CC, Kastelein JJ, et al.: Short-term efficacy and safety of pravastatin in 72 children with familial hypercholesterolemia. Pediatr Res 1996, 39:867–871.

    Article  PubMed  CAS  Google Scholar 

  6. Lambert M, Lupien PJ, Gagne C, et al.: Treatment of familial hypercholesterolemia in children and adolescents: effect of lovastatin. Canadian Lovastatin in Children Study Group. Pediatrics 1996, 97:619–628.

    PubMed  CAS  Google Scholar 

  7. Stein EA, Illingworth DR, Kwiterovich PO, et al.: Efficacy and safety of lovastatin in adolescent males with heterozygous familial hypercholesterolemia: a randomized controlled trial. JAMA 1999, 281:137–144.

    Article  PubMed  CAS  Google Scholar 

  8. de Jongh S, Ose L, Szamosi T, et al.: Efficacy and safety of statin therapy in children with familial hypercholesterolemia: a randomized, double-blind, placebo-controlled trial with simvastatin. Circulation 2002, 106:2231–2237.

    Article  PubMed  Google Scholar 

  9. Dirisamer A, Hachemian N, Bucek RA, et al.: The effect of lowdose simvastatin in children with familial hypercholesterolaemia: a 1-year observation. Eur J Pediatr 2003, 162:421–425.

    PubMed  CAS  Google Scholar 

  10. McCrindle BW, Ose L, Marais AD: Efficacy and safety of atorvastatin in children and adolescents with familial hypercholesterolemia or severe hyperlipidemia: a multicenter, randomized, placebo-controlled trial. J Pediatr 2003, 143:74–80.

    Article  PubMed  CAS  Google Scholar 

  11. Wiegman A, Hutten BA, de Groot E, et al.: Efficacy and safety of statin therapy in children with familial hypercholesterolemia: a randomized controlled trial. JAMA 2004, 292:331–337. Placebo-controlled double-blind study of over 200 male and female children and adolescents with heterozygous familial hypercholesterolemia, showing that those treated with pravastatin had lower LDLC and significantly less carotid IMT than those on placebo.

    Article  PubMed  CAS  Google Scholar 

  12. Clauss SB, Holmes KW, Hopkins P, et al.: Efficacy and safety of lovastatin therapy in adolescent girls with heterozygous familial hypercholesterolemia. Pediatrics 2005, 116:682–688.

    Article  PubMed  Google Scholar 

  13. The DISC Collaborative Research Group: The efficacy and safety of lowering dietary intake of total fat, saturated fat, and cholesterol in children with elevated LDL-cholesterol: the Dietary Intervention Study in Children (DISC). JAMA 1995, 273:1429–1435.

    Article  Google Scholar 

  14. Obarzanek E, Hunsberger SA, VanHorn L, et al.: Safety of a fatreduced diet: the Dietary Intervention Study in Children (DISC). Pediatrics 1997, 100:51–59.

    Article  PubMed  CAS  Google Scholar 

  15. Simons-Morton DG, Hunsberger S, Van Horn L, et al.: Nutrient intake and blood pressure in children: findings from the Dietary Intervention Study in Children (DISC). Hypertension 1997, 29:930–936.

    PubMed  CAS  Google Scholar 

  16. Kwiterovich PO: The role of fiber in the treatment of hypercholesteroelmic children and adolescents. Pediatrics 1995, 96:1005–1010.

    PubMed  Google Scholar 

  17. Kwiterovich PO, Chen SC, Virgil DG, et al.: Biochemical and clinical characterization of obligate heterozygotes for phytosterolemia and their response to a low-fat diet and to a plant sterol ester dietary challenge. J Lipid Res 2003, 44:1143–1155.

    Article  PubMed  CAS  Google Scholar 

  18. Kwiterovich PO: Biochemical, clinical, epidemiologic, genetic and pathologic data in the pediatric age group relevant to the cholesterol hypothesis. Pediatrics 1986, 78:3490–362.

    Google Scholar 

  19. McGill HC Jr, Herderick EE, McMahan CA, et al.: Atherosclerosis in youth. Minerva Pediatr 2002, 54:437–447.

    PubMed  Google Scholar 

  20. McGill HC Jr, McMahan CA, Zieske AW, et al.: Associations of coronary heart disease risk factors with the intermediate lesion of atherosclerosis in youth. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol 2000, 20:1998–2004.

    PubMed  Google Scholar 

  21. Berenson GS, Srinivasan SR, Bao W, et al.: Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med 1998, 338:1650–1656.

    Article  PubMed  CAS  Google Scholar 

  22. Freedman DS, Srinivasan SR, Shear CL, et al.: The relation of apolipoproteins A-I and B in children to parental myocardial infarction. N Engl J Med 1986, 315:721–726.

    Article  PubMed  CAS  Google Scholar 

  23. Mahoney LT, Burns TL, Stanford W, et al.: Coronary risk factors measured in childhood and young adult life are associated with coronary calcification in young adults: the Muscatine Study. J Am Coll Cardiol 1996, 27:277–284.

    Article  PubMed  CAS  Google Scholar 

  24. Kwiterovich PO, Levy RI, Fredrickson DS: Neonatal diagnosis of familial type II hyperlipoproteinemia. Lancet 1973, 1:118–122.

    Article  PubMed  Google Scholar 

  25. Kwiterovich PO, Fredrickson DS, Levy RI: Familial hypercholesterolemia (one form of familial type II hyperlipoproteinemia): a study of its biochemical, genetic and clinical presentation in childhood. J Clin Invest 1974, 53:1237–1249.

    PubMed  Google Scholar 

  26. Cortner JA, Coates PM, Gallagher PR: Prevalence and expression of familial combined hyperlipidemia in childhood. J Pediatr 1990, 116:514–524.

    Article  PubMed  CAS  Google Scholar 

  27. Goldstein JL, Hobbs HH, Brown MS: Familial hypercholesterolemia. In The Metabolic and Molecular Bases of Inherited Disease, edn 8. Edited by Scriver C, Beaudet A, Sly W, and Valle D. New York: McGraw-Hill; 2001:2863–2913.

    Google Scholar 

  28. Rader DJ, Cohen J, Hobbs HH: Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest 2003, 111:1795–1803. Superb up to date review of disorders involved with marked elevation of LDL-C.

    Article  PubMed  CAS  Google Scholar 

  29. Mietus-Snyder M, Malloy MJ: Endothelial dysfunction occurs in children with two genetic dyslipidemias: improvement with antioxidant vitamin therapy. J Pediatr 1998, 133:35–40.

    Article  PubMed  CAS  Google Scholar 

  30. Slyper H: Clinical review 168: what vascular ultrasound testing has revealed about pediatric atherogenesis, and a potential clinical role for ultrasound in pediatric risk management. J Clin Endocrinol Metab 2004, 89:3089–3095.

    Article  PubMed  CAS  Google Scholar 

  31. Innerarity TL, Mahley RW, Weisgraber KH, et al.: Familial defective apolipoprotein B-100: a mutation of apolipoprotein B that causes hypercholesterolemia. J Lipid Res 1990, 31:1337–1349.

    PubMed  CAS  Google Scholar 

  32. Leren TP: Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin Genet 2004, 65:419–422.

    Article  PubMed  CAS  Google Scholar 

  33. Abifadel M, Varret M, Rabies JP, et al.: Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003, 34:154–156.

    Article  PubMed  CAS  Google Scholar 

  34. Arca M, et al.: Autosomal recessive hypercholesterolemia in Sardinia, Italy, and mutations in ARH: a clinical and molecular genetic analysis. Lancet 2002, 359:841–847.

    Article  PubMed  CAS  Google Scholar 

  35. Lind S, Olsson AG, Erickson M, et al.: Autosomal recessive hypercholesterolemia: normalization of plasma LDL cholesterol by ezetimibe in combination with statin treatment. J Intern Med 2004, 256:406–412.

    Article  PubMed  CAS  Google Scholar 

  36. Salen G, Shefer S, Nguyen L, et al.: Sitosterolemia. J Lipid Res 1992, 33:945–955.

    PubMed  CAS  Google Scholar 

  37. Berge KE, Tian H, Graf GA, et al.: Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000, 290:1771–1775. Demonstrates the basic defect in sitosterolemia and the discovery of the ABCG5/ABCG8 transporters in intestine and liver.

    Article  PubMed  CAS  Google Scholar 

  38. Lu K, Lee MH, Hazard S, et al.: Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genet 2001, 69:278–290.

    Article  PubMed  Google Scholar 

  39. Salen G, von Bergmann K, Lutjohann D, et al., and the Multicenter Sitosterolemia Study Group: Ezetimibe effectively reduces plasma plant sterols in patients with sitosterolemia. Circulation 2004, 109:766–771.

    Article  CAS  Google Scholar 

  40. Amudsen AL, Ntanios F, Put N, Ose L: Long-term compliance and changes in plasma lipids, plant sterols, and carotinoids in children and parents with FH consuming plant sterol ester-enriched spread. Eur J Clin Nutr 2004, 58:1612–1620. Demonstrates the efficacy of using plant sterol esters in children with elevated LDL-C levels.

    Article  CAS  Google Scholar 

  41. Farah R, Kwiterovich PO, Neill CA: A study of the dose-effect of cholestyramine in children and young adults with familial hypercholesterolemia. Lancet 1977, 1:59–63.

    PubMed  CAS  Google Scholar 

  42. Tonstad S, Knudtzon J, Sivertsen M, et al.: Efficacy and safety of cholestyramine therapy in peripubertal and prepubertal children with familial hypercholesterolemia. J Pediatr 1996, 129:42–49.

    Article  PubMed  CAS  Google Scholar 

  43. Naoumova RP, Thompson GR, Soutar AK: Current management of severe homozygous FH. Curr Opin Lipidol 2004, 15:413–422.

    Article  PubMed  CAS  Google Scholar 

  44. Gagne C, Gaudet D, Bruckert E: Ezetimibe Study Group. Efficacy and safety of ezetimibe co-administered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia. Circulation 2002, 105:2469–2475.

    Article  PubMed  CAS  Google Scholar 

  45. Goldstein JL, Schrott HG, Hazzard WR, et al.: Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 1973, 52:1544–1568.

    PubMed  CAS  Google Scholar 

  46. Kwiterovich PO Jr: The metabolic pathways of HDL, LDL and triglycerides. A current review. Am J Card 2000, 86(Suppl 1):5–10.

    Article  Google Scholar 

  47. Kwiterovich PO: Clinical relevance of the biochemical, metabolic and genetic factors that influence low density lipoprotein heterogeneity. Am J Cardiol 2002, 90(Suppl 8A):30i-48i.

    Article  PubMed  CAS  Google Scholar 

  48. Sniderman AD, Scantlebury T, Cianflione K: Hypertriglyceridemic hyperapob: the unappreciated atherogenic dyslipoproteinemia in type 2 diabetes mellitus. Ann Intern Med 2001, 135:447–459.

    PubMed  CAS  Google Scholar 

  49. Eckel RH, Grundy SM, Zimmet PZ: The metabolic syndrome. Lancet 2005, 365:1415–1428. Comprehensive and up to date review of the metabolic syndrome.

    Article  PubMed  CAS  Google Scholar 

  50. Troiano RP, Flegal KM: Overweight children and adolescents: description, epidemiology, and demographics. Pediatrics 1998, 101:497–504.

    PubMed  CAS  Google Scholar 

  51. Cook S, Weitzman M, Auinger P, et al.: Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch Pediatr Adolesc Med 2003, 157:821–827.

    Article  PubMed  Google Scholar 

  52. Vos LE, Oren A, Uiterwaal C, et al.: Adolescent blood pressure and blood pressure tracking into young adulthood are related to subclinical atherosclerosis: the Atherosclerosis Risk in Young Adults (ARYA) study. Am J Hypertension 2003, 16:549–555.

    Article  Google Scholar 

  53. Weiss R, Dziura J, Burgert TS, et al.: Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 2004, 350:2362–2374. Excellent study of metabolic syndrome in youth, including elevations in certain inflammatory factors.

    Article  PubMed  CAS  Google Scholar 

  54. Janssen I, Katzmarzyk, Srinivasan SIR, et al.: Utility of childhood BMI in the prediction of adulthood disease: comparison of national and international references. Obes Res 2005, 13:1106–1115. Recent data showing the importance of BMI as a childhood predictor of adult obesity.

    PubMed  Google Scholar 

  55. Urbina EM, Kieltkya L, Tsai J, et al.: Impact of multiple cardiovascular disease risk factors on brachial artery distensibility in young adults: the Bogolusa Heart Study. Am J Hypertens 2005, 18:767–771.

    Article  PubMed  Google Scholar 

  56. Chen W, Srinivasan SR, Li S, et al.: Metabolic syndrome variables at low levels in childhood are beneficially associated with adulthood cardiovascular risk: the Bogalusa Heart Study. Diabetes Care 2005, 28:126–131.

    Article  PubMed  Google Scholar 

  57. Maslowska M, Wang HW, Cianflone K: Novel roles for acylation stimulatory protein/C3a desArg: a review of recent in vitro and in vivo evidence. Vitam Horm 2005, 70:309–332. Excellent review of the acylation stimulatory protein and its role the pathogenesis of hyperapoB.

    Article  PubMed  CAS  Google Scholar 

  58. Motevalli M, Goldschmidt-Clermont PJ, Virgil D, Kwiterovich PO: Abnormal protein tyrosine phosphorylation in fibroblasts from hyperapoB subjects. J Biol Chem 1997, 272:24703–24709.

    Article  PubMed  CAS  Google Scholar 

  59. Badzioch MD, Igo RP Jr, Gagnon F, et al.: Low-density lipoprotein particle size loci in familial combined hyperlipidemia: evidence for multiple loci from a genome scan. Arterioscler Thromb Vasc Biol 2004, 24:1942–1950.

    Article  PubMed  CAS  Google Scholar 

  60. Gagnon F, Jarvik GP, Badzioch MD, et al.: Genome scan for quantitative trait loci influencing HDL levels: evidence for multilocus inheritance in familial combined hyperlipidemia. Hum Genet 2005, 117:494–505.

    Article  PubMed  CAS  Google Scholar 

  61. Aouizerat BE, Allayee H, Bodnar J, et al.: Novel genes for familial combined hyperlipidemia. Curr Opin Lipidol 1999, 10:113–122.

    Article  PubMed  CAS  Google Scholar 

  62. Lusis AJ, Fogelman AM, Fonarow GC: Genetic basis of atherosclerosis: part I: new genes and pathways. Circulation 2004, 10:1868–1873.

    Article  Google Scholar 

  63. Kalant D, Maclaren R, Cui W, et al.: C5L2 is a functional receptor for acylation stimulatory protein. J Biol Chem 2005, 280:23936–23944.

    Article  PubMed  CAS  Google Scholar 

  64. Pajukanta P, Lilja HE, Sinsheimer JS, et al.: Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nat Genet 2004, 36:371–376.

    Article  PubMed  CAS  Google Scholar 

  65. Allayee H, Krass KL, Pajukanta P, et al.: Locus for elevated apolipoprotein B levels on chromosome 1p31 in families with familial combined hyperlipidemia. Circ Res 2002, 90:926–931.

    Article  PubMed  CAS  Google Scholar 

  66. Liacouras CA, Coates PM, Gallagher PR, Cortner JA: Use of cholestyramine in the treatment of children with familial combined hyperlipidemia. J Pediatr 1993, 122:477–482.

    Article  PubMed  CAS  Google Scholar 

  67. Kay JP, Alemzadeh R, Langley G, et al.: Beneficial effects of metformin in normoglycemic morbidly obese adolescents. Metabolism 2001, 50:1457–1461.

    Article  PubMed  CAS  Google Scholar 

  68. Freemark M, Bursey D: The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics 2001, 107:1–7(E55).

    Article  Google Scholar 

  69. Guttmann-Bauman I: Approach to adolescent polycystic ovary syndrome (PCOS) in the pediatric endocrine community in the USA. J Pediatr Endocrinol Metab 2005, 18:499–506. Good review of adolescent PCOS.

    PubMed  Google Scholar 

  70. Vryonidou A, Papatheodorou A, Tavridou A, et al.: Association of hyperandrogenic and metabolic phenotype with carotid intima-media thickness in young women with polycystic ovary syndrome. J Clin Endocrinol Metab 2005, 90:2740–2746.

    Article  PubMed  CAS  Google Scholar 

  71. Brunzell JD, Deeb SS: Familial lipoprotein lipase deficiency, Apo C-II deficiency, and hepatic lipase deficiency. In The Metabolic and Molecular Bases of Inherited Disease, edn 8. Edited by Scriver C, Beaudet A, Sly W, Valle D. New York: McGraw-Hill; 2001:2789–2816.

    Google Scholar 

  72. Ruel IL, Couture P, Cohn JS, et al.: Evidence that hepatic lipase deficiency in humans is not associated with proatherogenic changes in HDL composition and metabolism. J Lipid Res 2004, 45:1528–1537.

    Article  PubMed  CAS  Google Scholar 

  73. Ruel IL, Couture P, Cohn JS, Lamarche B: Plasma metabolism of apoB-containing lipoproteins in patients with hepatic lipase deficiency. Atherosclerosis 2005, 180:355–366.

    Article  PubMed  CAS  Google Scholar 

  74. Rouis M, Dugi KA, Previato L, et al.: Therapeutic response to medium-chain triglycerides and omega-3 fatty acids in a patient with the familial chylomicronemia syndrome. Arterioscler Thromb Vasc Biol 1997, 17:1400–1406.

    PubMed  CAS  Google Scholar 

  75. Mahley RW, Huang Y, Rall SC Jr: Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia). J Lipid Res 1999, 40:1933–1949.

    PubMed  CAS  Google Scholar 

  76. Tall AR, Breslow JL, Rubin EM: Genetic disorders affecting high-density lipoproteins. In The Metabolic and Molecular Bases of Inherited Disease, edn 8. Edited by Scriver C, Beaudet A, Sly W, Valle D. New York: McGraw-Hill; 2001:2915–2936.

    Google Scholar 

  77. Cohen JC, Kiss RS, Pertsemlidis A, et al.: Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 2004, 305:869–872. Most recent study on the genetic and molecular factors that affect low HDL-C levels.

    Article  PubMed  CAS  Google Scholar 

  78. Assmann G, von Ekardstein A, Funcke H: High density lipoproteins, reverse cholesterol transport of cholesterol, and coronary artery disease: Insights from mutations. Circulation 1993, 87(Suppl 4):III28-III34.

    PubMed  CAS  Google Scholar 

  79. Nissen SE, Tsunoda T, Tuzcu EM, et al.: Effect of recombinant apoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes. JAMA 2003, 290:2292–2300.

    Article  PubMed  CAS  Google Scholar 

  80. Assmann G, von Ekardstein A, Brewer HB Jr: Familial analphalipoproteinemia: Tangier disease. In The Metabolic and Molecular Bases of Inherited Disease. Edited by Scriver C, Beaudet A, Sly W, Valle D. New York: McGraw-Hill; 2001:2937–2960.

    Google Scholar 

  81. Brewer HB, Remaley AT, Neufeld EB, et al.: Regulation of plasma high-density lipoprotein levels by the ABCA1 transporter and the emerging role of high-density lipoprotein in the treatment of cardiovascular disease. Arterioscler Thromb Vasc Biol 2004, 24:1755–1760.

    Article  PubMed  CAS  Google Scholar 

  82. Remaley AT, Schumacher UK, Stonik JA, et al.: Decreased reverse cholesterol transport from Tangier disease fibroblasts. Acceptor specificity and effect of brefeldin on lipid efflux. Arterioscler Thromb Vasc Biol 1997, 17:1813–1821.

    PubMed  CAS  Google Scholar 

  83. Calabresi L, Pisciotta L, Costantin A, et al.: The molecular basis of lecithin:cholesterol acyltransferase deficiency syndromes. A comprehensive study of molecular and biochemical findings in 13 unrelated Italian families. Arterioscler Thromb Vasc Biol 2005, 25:1972–1978.

    Article  PubMed  CAS  Google Scholar 

  84. Zhong S, Sharp DS, Grove JS, et al.: Increased coronary heart disease in Japanese-American men with mutations in the cholesteryl ester transfer protein gene despite increased HDL levels. J Clin Invest 1996, 97:2917–2923.

    Article  PubMed  CAS  Google Scholar 

  85. Brousseau ME, Schaefer EJ, Wolfe ML, et al.: Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med 2004, 350:1505–1515.

    Article  PubMed  CAS  Google Scholar 

  86. Marcovina SM, Koschinsky ML, Albers JJ, Skarlatos S: Report of the National Heart, Lung and Blood Institute Workshop on Lipoprotein (a) and Cardiovascular Disease: recent advances and future directions. Clin Chem 2003, 49:1785–1786.

    Article  PubMed  CAS  Google Scholar 

  87. Lauer RM, Clarke WR: Use of cholesterol measurements in childhood for the prediction of adult hypercholesterolemia. The Muscatine Study. JAMA 1990, 264:3034–3038.

    Article  PubMed  CAS  Google Scholar 

  88. Kwiterovich PO Jr, Barton BA, McMahon RP, et al.: Effects of diet and sexual maturation of LDL-cholesterol during puberty: the Dietary Intervention Study in Children (DISC). Circulation 1997, 96:2526–2533.

    PubMed  CAS  Google Scholar 

  89. Klag MJ, Ford DE, Mead LA, et al.: Serum cholesterol in young men and subsequent cardiovascular disease. N Engl J Med 1993, 328:313–318.

    Article  PubMed  CAS  Google Scholar 

  90. Janssen I, Katzmarzyk PT, Srinivasan SR, et al.: Combined influence of body mass index and waist circumference on coronary artery disease risk factors among children and adolescents. Pediatrics 2005, 115:1623–1630.

    Article  PubMed  Google Scholar 

  91. Bachorik PS, Lovejoy KL, Carroll MD, Johnson CL: Apolipoprotein B and AI distributions in the United States. 1988–1991: results of the National Health and Nutrition Examination Survey III (NHANESIII). Clin Chem 1997, 43:2364–2378.

    PubMed  CAS  Google Scholar 

  92. Lee J, Lauer RM, Clarke WR: Lipoproteins in the progeny of young men with coronary artery disease: children with increased risk. Pediatrics 1986, 78:330–337.

    PubMed  CAS  Google Scholar 

  93. Sniderman AD, Teng B, Genest J, Cianflone K, et al.: Familial aggregation and early expression of hyperapobetalipoproteinemia. Am J Cardiol 1985, 55:291–295.

    Article  PubMed  CAS  Google Scholar 

  94. Altmann SW, Davis HR Jr, Zhu LJ, et al.: Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 2004, 303:1201–1204.

    Article  PubMed  CAS  Google Scholar 

  95. Horton JD, Goldstein JL, Brown MS: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002, 109:1125–1131.

    Article  PubMed  CAS  Google Scholar 

  96. Kane JP, Malloy MJ, Ports TA, et al.: Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. JAMA 1990, 264:3007–3012.

    Article  PubMed  CAS  Google Scholar 

  97. Silverstein J, Klingensmith G, Copeland K, et al.: Care of children and adolescents with type I diabetes. A statement of the American Diabetes Association. Diabetes Care 2005, 28:186–212. Summarizes rationale for recommendations for drug treatment of high LDL-C in people with type I diabetes.

    Article  PubMed  Google Scholar 

  98. Prescott WA, Streetman DD, Streetman DS: The potential role of HMG-CoA reductase inhibitors in pediatric nephrotic syndrome. Ann Pharmacotherapy 2004, 38:2105–2114. Summarizes rationale for treatment of high LDL-C with drugs in a subset of children with the nephrotic syndrome.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, K.W., Kwiterovich, P.O. Treatment of dyslipidemia in children and adolescents. Curr Cardiol Rep 7, 445–456 (2005). https://doi.org/10.1007/s11886-005-0063-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-005-0063-x

Keywords

Navigation