Skip to main content

Advertisement

Log in

Quantitative single-photon emission computed tomography imaging

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Over the past decade, quantitation of cardiac single-photon emission computed tomography (SPECT) data, once limited to perfusion assessment, has been extended to global and regional function assessment for both the left and the right ventricle, as well as to measurement of additional cardiac parameters of diagnostic and prognostic interest. A number of commercially available quantitative algorithms exist, based on different mathematic operators and with varying degrees of automation, that are capable of providing accurate and reproducible results. This article describes the many quantitative cardiac SPECT measurements available today, defining them in terms of validation, practical use, and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Garcia EV, Cooke CD, Van Train KF, et al.: Technical aspects of myocardial SPECT imaging with technetium-99m sestamibi. Am J Cardiol 1990, 66:23E-31E.

    Article  PubMed  CAS  Google Scholar 

  2. Germano G, Kavanagh PB, Waechter P, et al.: A new algorithm for the quantitation of myocardial perfusion SPECT. I: technical principles and reproducibility. J Nucl Med 2000, 41:712–719.

    PubMed  CAS  Google Scholar 

  3. Van Train KF, Areeda J, Garcia EV, et al.: Quantitative same-day rest-stress technetium-99m-sestamibi SPECT: definition and validation of stress normal limits and criteria for abnormality. J Nucl Med 1993, 34:1494–1502.

    PubMed  Google Scholar 

  4. Slomka PJ, Hurwitz GA, St. Clement G, et al.: Three-dimensional demarcation of perfusion zones corresponding to specific coronary arteries: application for automated interpretation of myocardial SPECT. J Nucl Med 1995, 36:2120–2126.

    PubMed  CAS  Google Scholar 

  5. Faber TL, Cooke CD, Folks RD, et al.: Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. J Nucl Med 1999, 40:650–659.

    PubMed  CAS  Google Scholar 

  6. Ficaro E, Kritzman J, Corbett J: Development and clinical validation of normal Tc-99m sestamibi database: comparison of 3D-MSPECT to CEqual [abstract]. J Nucl Med 1999, 40:125P.

    Google Scholar 

  7. Kirac S, Wackers FJ, Liu YH: Validation of the Yale circumferential quantification method using 201Tl and 99mTc: a phantom study. J Nucl Med 2000, 41:1436–1441.

    PubMed  CAS  Google Scholar 

  8. Lipke CSA, Kuhl HP, Nowak B, et al.: Validation of 4D-MSPECT and QGS for quantification of left ventricular volumes and ejection fraction from gated Tc-99m-MIBI SPET: comparison with cardiac magnetic resonance imaging. Eur J Nucl Med Mol Imaging 2004, 31:482–490.

    Article  PubMed  Google Scholar 

  9. DePuey E, Artifacts in SPECT myocardial perfusion imaging. In Cardiac SPECT Imaging, edn 2. Edited by DePuey EG, Garcia EV, Berman DS. Philadelphia: Lippincott, Williams & Wilkins; 2001:231–262.

    Google Scholar 

  10. Berman D, Hachamovitch R, Shaw L, et al.: Nuclear cardiology. In Hurst's the Heart. Edited by Fuster V. New York McGraw-Hill Medical Publishing; 2004:563–597.

    Google Scholar 

  11. Cerqueira MD, Weissman NJ, Dilsizian V, et al.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. J Nucl Cardiol 2002, 9:240–245. A description of the 17-segment model recommended for LV perfusion and function assessment.

    Article  PubMed  Google Scholar 

  12. Berman D, Shaw L, Germano G: Nuclear cardiology. In Hurst's the Heart. Edited by Fuster V. New York: McGraw-Hill Medical Publishing; 2001:525–565.

    Google Scholar 

  13. Hachamovitch R, Hayes SW, Friedman JD, et al.: Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 2003, 107:2900–2907.

    Article  PubMed  Google Scholar 

  14. Nakajima K, Higuchi T, Taki J, et al.: Accuracy of ventricular volume and ejection fraction measured by gated myocardial SPECT: comparison of 4 software programs. J Nucl Med 2001, 42:1571–1578. A comparative report demonstrating substantial differences among various commercially available quantitative algorithms, concluding that their results should not be used interchangeably.

    PubMed  CAS  Google Scholar 

  15. Sharir T, Germano G, Kavanagh PB, et al.: Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation 1999, 100:1035–1042. A large study demonstrating the incremental prognostic value of quantitative measurements of global cardiac function over perfusion. Later studies refined the prognostic thresholds by making them sex-specific.

    PubMed  CAS  Google Scholar 

  16. White HD, Norris RM, Brown MA, et al.: Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987, 76:44–51.

    PubMed  CAS  Google Scholar 

  17. Germano G, Kiat H, Kavanagh PB, et al.: Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995, 36:2138–2147.

    PubMed  CAS  Google Scholar 

  18. Ficaro E, Quaife R, Kritzman J, et al.: Accuracy and reproducibility of 3D-MSPECT for estimating left ventricular ejection fraction in patients with severe perfusion abnormalities [abstract]. Circulation 1999, 100:I-26.

    Google Scholar 

  19. Shen MY, Liu YH, Sinusas AJ, et al.: Quantification of regional myocardial wall thickening on electrocardiogram-gated SPECT imaging. J Nucl Cardiol 1999, 6:583–595.

    Article  PubMed  CAS  Google Scholar 

  20. Germano G, Berman D: Quantitative gated perfusion SPECT. In Clinical Gated Cardiac SPECT. Edited by Germano G, Berman D. Armonk, NY: Futura Publishing; 1999:115–146. A comprehensive review of the various algorithmic approaches to gated SPECT quantification, the parameters they measure, their validation, and limitations.

    Google Scholar 

  21. Ababneh AA, Sciacca RR, Kim B, et al.: Normal limits for left ventricular ejection fraction and volumes estimated with gated myocardial perfusion imaging in patients with normal exercise test results: influence of tracer, gender, and acquisition camera. J Nucl Cardiol 2000, 7:661–668.

    Article  PubMed  CAS  Google Scholar 

  22. Sharir T, Germano G, Kang XP, et al.: Prognostic value of poststress left ventricular volume and ejection fraction by gated myocardial perfusion single photon emission computed tomography in women: gender related differences in normal limits and outcome [abstract]. Circulation 2002, 106:II-523.

    Google Scholar 

  23. Santos M, Lewin H, Hayes S, et al.: A potential cause for underestimation of LVEF by QGS [abstract]. J Nucl Cardiol 2001, 8:S130.

    Google Scholar 

  24. Nichols K, Yao SS, Kamran M, et al.: Clinical impact of arrhythmias on gated SPECT cardiac myocardial perfusion and function assessment. J Nucl Cardiol 2001, 8:19–30.

    Article  PubMed  CAS  Google Scholar 

  25. Smanio PE, Watson DD, Segalla DL, et al.: Value of gating of technetium-99m sestamibi single-photon emission computed tomographic imaging. J Am Coll Cardiol 1997, 30:1687–1692.

    Article  PubMed  CAS  Google Scholar 

  26. Yamagishi H, Shirai N, Yoshiyama M, et al.: Incremental value of left ventricular ejection fraction for detection of multivessel coronary artery disease in exercise (201)Tl gated myocardial perfusion imaging. J Nucl Med 2002, 43:131–139.

    PubMed  Google Scholar 

  27. Sharir T, Germano G, Lewin HC, et al.: Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med 2001, 42:831–837.

    PubMed  CAS  Google Scholar 

  28. Hachamovitch R, Hayes SW, Cohen I, et al.: Inducible ischemia is superior to EF for identification of short term survival benefit with revascularization vs. medical therapy. Circulation 2002, 106:II-523.

    Google Scholar 

  29. Klocke FJ, Baird MG, Lorell BH, et al.: ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging — executive summary — a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to revise the 1995 guidelines for the clinical use of cardiac radionuclide imaging). J Am Coll Cardiol 2003, 42:1318–1333.

    Article  PubMed  Google Scholar 

  30. Germano G, Van Kriekinge S, Berman D: Quantitative gated blood pool SPECT. In Clinical Gated Cardiac SPECT. Edited by Germano G, Berman D. Armonk, NY: Futura Publishing; 1999:339–347.

    Google Scholar 

  31. Germano G, Berman DS: The right stuff. J Nucl Cardiol 2002, 9:226–228.

    Article  PubMed  Google Scholar 

  32. Germano G, Erel J, Lewin H, et al.: Automatic quantitation of regional myocardial wall motion and thickening from gated technetium-99m sestamibi myocardial perfusion singlephoton emission computed tomography. J Am Coll Cardiol 1997, 30:1360–1367.

    Article  PubMed  CAS  Google Scholar 

  33. Emmett L, Iwanochko RM, Freeman MR, et al.: Reversible regional wall motion abnormalities on exercise technetium-99m-gated cardiac single photon emission computed tomography predict high-grade angiographic stenoses. J Am Coll Cardiol 2002, 39:991–998.

    Article  PubMed  Google Scholar 

  34. Sharir T, Bacher-Stier C, Dhar S, et al.: Identification of severe and extensive coronary artery disease by postexercise regional wall station abnormalities in Tc-99m sestamibi gated single-photon emission computed tomography. Am J Cardiol 2000, 86:1171–1175.

    Article  PubMed  CAS  Google Scholar 

  35. Shirai N, Yamagishi H, Yoshiyama M, et al.: Incremental value of assessment of regional wall motion for detection of multivessel coronary artery disease in exercise Tl-201 gated myocardial perfusion imaging. J Nucl Med 2002, 43:443–450.

    PubMed  Google Scholar 

  36. Travin MI, Heller GV, Johnson LL, et al.: The prognostic value of ECG-gated SPECT imaging in patients undergoing stress Tc-99m sestamibi myocardial perfusion imaging. J Nucl Cardiol 2004, 11:253–262.

    Article  PubMed  Google Scholar 

  37. Nakajima K, Taki J, Kawano M, et al.: Diastolic dysfunction in patients with systemic sclerosis detected by gated myocardial perfusion SPECT: an early sign of cardiac involvement. J Nucl Med 2001, 42:183–188. The first published report of quantitative LV diastolic function assessment from 16-frame gated SPECT.

    PubMed  CAS  Google Scholar 

  38. Higuchi T, Nakajima K, Taki J, et al.: Assessment of left ventricular systolic and diastolic function based on the edge detection method with myocardial ECG-gated SPET. Eur J Nucl Med 2001, 28:1512–1516.

    Article  PubMed  CAS  Google Scholar 

  39. Kikkawa M, Nakamura T, Sakamoto K, et al.: Assessment of left ventricular diastolic function from quantitative electrocardiographic-gated (99)mTc-tetrofosmin myocardial SPET (errata appear in 28:1579). Eur J Nucl Med 2001, 28:593–601.

    Article  PubMed  CAS  Google Scholar 

  40. Germano G, Kavanagh PB, Berman DS: An automatic approach to the analysis, quantitation and review of perfusion and function from myocardial perfusion SPECT images. Int J Card Imaging 1997, 13:337–346.

    Article  PubMed  CAS  Google Scholar 

  41. Homma S, Kaul S, Boucher CA: Correlates of lung/heart ratio of thallium-201 in coronary artery disease. J Nucl Med 1987, 28:1531–1535.

    PubMed  CAS  Google Scholar 

  42. Bacher-Stier C, Sharir T, Kavanagh PB, et al.: Postexercise lung uptake of 99mTc-sestamibi determined by a new automatic technique: validation and application in detection of severe and extensive coronary artery disease and reduced left ventricular function. J Nucl Med 2000, 41:1190–1197.

    PubMed  CAS  Google Scholar 

  43. Mazzanti M, Germano G, Kiat H, et al.: Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilation of the left ventricle in dual-isotope myocardial perfusion SPECT. J Am Coll Cardiol 1996, 27:1612–1620.

    Article  PubMed  CAS  Google Scholar 

  44. Hansen CL, Sangrigoli R, Nkadi E, et al.: Comparison of pulmonary uptake with transient cavity dilation after exercise thallium-201 perfusion imaging. J Am Coll Cardiol 1999, 33:1323–1327.

    Article  PubMed  CAS  Google Scholar 

  45. Daou D, Coaguila C, Delahaye N, et al.: Discordance between exercise SPECT lung TI-201 uptake and left ventricular transient ischemic dilation in patients with CAD. J Nucl Cardiol 2004, 11:53–61. A study showing, in a large patient population, that quantitative measurements of L/H ratio and TID index are largely uncorrelated, despite both being markers of severe and extensive cardiac disease.

    Article  PubMed  Google Scholar 

  46. McClellan JR, Travin MI, Herman SD, et al.: Prognostic importance of scintigraphic left ventricular cavity dilation during intravenous dipyridamole technetium-99m sestamibi myocardial tomographic imaging in predicting coronary events. Am J Cardiol 1997, 79:600–605.

    Article  PubMed  CAS  Google Scholar 

  47. Abidov A, Bax JJ, Hayes SW, et al.: Transient ischemic dilation ratio of the left ventricle is a significant predictor of future cardiac events in patients with otherwise normal myocardial perfusion SPECT. J Am Coll Cardiol 2003, 42:1818–1825.

    Article  PubMed  Google Scholar 

  48. Thomas GS, Miyamoto MI, Morello AP, et al.: Technetium (99m) sestamibi myocardial perfusion imaging predicts clinical outcome in the community outpatient setting — the Nuclear Utility in the Community (NUC) Study. J Am Coll Cardiol 2004, 43:213–223.

    Article  PubMed  Google Scholar 

  49. Madison S, Dalipaj M, Ruddy T: Effects of gender and stress on transient ischemic dilation ratios in normals [abstract]. J Nucl Cardiol 2003, 10:S85.

    Google Scholar 

  50. Kritzman JN, Ficaro EP, Corbett JR: Post-stress LV dilation: the effect of imaging protocol, gender and attenuation correction [abstract]. J Nucl Med 2001, 42:50P.

  51. Faber T, Folks R, Cooke C, et al.: Left ventricular mass from ungated perfusion images: comparison with MRI [abstract]. J Nucl Med 1997, 38:20P.

    Google Scholar 

  52. Abidov A, Slomka P, Hayes S, et al.: Left ventricular shape index assessed by gated myocardial perfusion SPECT: a new scintigraphic marker of congestive heart failure [abstract]. J Nucl Med 2004, 45:176P.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germano, G., Berman, D.S. Quantitative single-photon emission computed tomography imaging. Curr Cardiol Rep 7, 136–142 (2005). https://doi.org/10.1007/s11886-005-0026-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-005-0026-2

Keywords

Navigation