Skip to main content
Log in

Recent advances in cardiac positron emission tomography in the clinical management of the cardiac patient

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Despite being primarily a research tool, positron emission tomography (PET) has seen slow but steady growth in the clinical management of the cardiac patient. The two major clinical applications of cardiac PET are regional myocardial perfusion imaging to determine the presence and severity of coronary artery disease and metabolic imaging to differentiate viable from nonviable myocardium in patients with ischemic left ventricular dysfunction. Indeed, PET with either nitrogen 13 ammonia or rubidium 82 may offer advantages over current single photon emission computed tomography approaches to assess myocardial perfusion. PETwith fluorine 18 fluorodeoxyglucose is considered the current gold standard for identifying viable myocardium. Finally, the use of PET to quantify myocardial perfusion, metabolism, and innervation has led to key insights into the role of altered microvascular function, substrate metabolism, and neuronal function in a variety of cardiac disease processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Baird MG, Bateman TM, Berman DS, et al.: ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging. J Am Coll Cardiol 2003, 42:1318–1333.

    Article  PubMed  Google Scholar 

  2. Hendel RC, Corbett JR, Cullom SJ, et al.: The value and practice of attenuation correction for myocardial perfusion SPECT imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Cardiol 2002, 9:135–143.

    Article  PubMed  Google Scholar 

  3. American Society of Nuclear Cardiology: Updated imaging guidelines for nuclear cardiology procedures. J Nucl Cardiol 2001, 8:G5-G58.

    Article  Google Scholar 

  4. Bacharach SL, Bax JJ, Case J, et al.: ASNC practice guidelines: PET myocardial glucose metabolism and perfusion imaging; Part 1-guidelines for patient preparation and data acquisition. ASNC website. http://www.asnc.org/

  5. Schelbert HR, Wisenberg G, Phelphs ME, et al.: Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in human beings with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 1982, 49:1197–1206.

    Article  PubMed  CAS  Google Scholar 

  6. Gould KL, Goldstein RA, Mullani NA, et al.: Noninvasive assessment of coronary stenosis by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Cardiol 1986, 7:775–789.

    Article  PubMed  CAS  Google Scholar 

  7. Yonekura Y, Tamaki N, Senda M, et al.: Detection of coronary artery disease with N-13 ammonia and high-resolution positron-emission tomography. Am Heart J 1987, 113:645–654.

    Article  PubMed  CAS  Google Scholar 

  8. Tamaki N, Yonekura Y, Senda M, et al.: Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. J Nucl Med 1988, 29:1181–1188.

    PubMed  CAS  Google Scholar 

  9. Laubenbacher C, Stevenson L, Kobishagawa J, et al.: An automated analysis program for the evaluation of cardiac PET studies: initial results in the detection and localization of coronary artery disease using N-13 ammonia. J Nucl Med 1991, 34:968–978.

    Google Scholar 

  10. Sand NP, Bottcher M, Madsen MM, et al.: Evaluation of regional myocardial perfusion in patients with severe left ventricular dysfunction: comparison of N-13 ammonia PET and Tc-99m sestamibi SPECT. J Nucl Cardiol 1998, 5:4–13.

    Article  PubMed  CAS  Google Scholar 

  11. Grover-McKay M, Ratib O, Schwaiger MS, et al.: Detection of coronary artery disease with positron emission tomography and rubidium 82. Am Heart J 1992, 123:646.

    Article  PubMed  CAS  Google Scholar 

  12. Simone GL, Mullani NZ, Page DA, Anderson BA: Utilization statistics and diagnostic accuracy of nonhospital-based positron emission tomography center for the detection of coronary artery disease using rubidium-82. Am J Physiol Imaging 1992, 314:203–209.

    Google Scholar 

  13. Go RT, Marwick TH, MacIntyre WJ, et al.: A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 1990, 31:1899–1905.

    PubMed  CAS  Google Scholar 

  14. Stewart RE, Schwaiger M, Molina E, et al.: Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 1991, 67:1303–1310.

    Article  PubMed  CAS  Google Scholar 

  15. Marwick TH, Shan K, Patel S, et al.: Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am J Cardiol 1997, 80:865–870.

    Article  PubMed  CAS  Google Scholar 

  16. Patterson RE, Eisner RL, Horowitz SF: Comparison of costeffectiveness and utility of exercise ECG, single photon emission computed tomography, and coronary angiography for diagnosis of coronary artery disease. Circulation 1995, 91:54–65.

    PubMed  CAS  Google Scholar 

  17. Di Carli MF, Janisse J, Grunberger G, et al.: Role of chronic hyperglycemia in the pathogensis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol 2003, 41:1387–1393. Using quantitative measurements of myocardial perfusion demonstrated the central role of chronic hypoglycemia in microvascular dysfunction in patients with diabetes mellitus. Demonstrates the potential of quantitative PET MPI to characterize mechanisms responsible for microvascular dysfunction.

    Article  PubMed  CAS  Google Scholar 

  18. Tawakol A, Forgione MA, Stuehlinger M, et al.: Homocysteine impairs coronary microvascular dilator function in humans. J Am Coll Cardiol 2002, 40:1051–1058.

    Article  PubMed  CAS  Google Scholar 

  19. Pitkanen OP, Nuutila P, Raitakari OT, et al.: Coronary flow reserve in young men with familial combined hyperlipidemia. Circulation 1999, 99:1678–1684.

    PubMed  CAS  Google Scholar 

  20. Cecchi F, Olivotto I, Gistri R, et al.: Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 2003, 349:1027–1035. Demonstrated in patients with hypertrophic cardiomyopathy that abnormalities in myocardial microvascular function was an independent predictor of an adverse outcome. This study shows the potential of quantitative PET MPI to risk stratify patients.

    Article  PubMed  CAS  Google Scholar 

  21. Baller D, Notohamiprodjo G, Gleichmann U, et al.: Improvement in coronary flow reserve determined by positron emission tomography after 6 months of cholesterol-lowering therapy in patients with early stages of coronary atherosclerosis. Circulation 1999, 99:2871–2875. An intervention study that demonstrated the salutary effects of lipidlowering therapy on myocardial vasodilator function in patients with hyperlipidemia and early CAD. Demonstrates the potential of quantitative PET MPI to identify therapeutic strategies that may reverse cardiac disease.

    PubMed  CAS  Google Scholar 

  22. Schelbert H, Beanlands RSB, Bengel F, et al.: ASNC practice guidelines: PET myocardial glucose metabolism and perfusion imaging; Part 2-guidelines for interpretation and reporting. ASNC website. http://www.asnc.org/

  23. Conversano A, Walsh JF, Geltman EM, et al.: Delineation of myocardial stunning and hibernation by positron emission tomography in patients with advanced coronary artery disease. Am Heart J 1996, 131:440–450.

    Article  PubMed  CAS  Google Scholar 

  24. Bax JJ, Poldermans D, Elhendy A, et al.: Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr Probl Cardiol 2001, 26:141–186.

    Article  Google Scholar 

  25. Rubin PJ, Lee DS, Davila-Roman VG, et al.: Differentiation of viable from nonviable myocardium by positron emission tomography in patients with recent myocardial infarction: superiority of C-11 acetate compared with F-18 fluorodeoxyglucose. Am J Cardiol 1996, 78:1230–1236.

    Article  PubMed  CAS  Google Scholar 

  26. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE: Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 2002, 39:1151–1158. Demonstrated the importance of the presence of viable myocardium as a marker of adverse outcome unless coronary revascularization is performed.

    Article  PubMed  Google Scholar 

  27. Kates AM, Herrero P, Dence C, et al.: Impact of aging on substrate metabolism by the human heart. J Am Coll Cardiol 2003, 41:293–299. Demonstrated that aging is associated with a shift in myocardial substrate metabolism to a greater dependence on glucose use. The results show the potential of quantitative PET measurements to identify subtle changes in myocardial substrate metabolism.

    Article  PubMed  CAS  Google Scholar 

  28. De las Fuentes L, Herrero P, Peterson LR, et al.: Myocardial fatty acid metabolism: independent predictor of left ventricular mass in hypertension and in left ventricular dysfunction. Hypertension 2003, 41:82–87.

    Article  CAS  Google Scholar 

  29. Davila-Roman VG, Vedala G, Herrero P, et al.: Altered fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2002, 40:271–277.

    Article  PubMed  CAS  Google Scholar 

  30. Monti LD, Lucignani G, Landoni C, et al.: Myocardial glucose uptake evaluated by positron emission tomography and fluorodeoxyglucose during hyperglycemic clamp in IDDM patients. Role of free fatty acid and insulin levels. Diabetes 1995, 44:537–542.

    Article  PubMed  CAS  Google Scholar 

  31. Nowak B, Sinha AM, Schaefer WM, et al.: Cardiac resynchronization therapy homogenizes myocardial glucose metabolism and perfusion in dilated cardiomyopathy and left bundle branch block. J Am Coll Cardiol 2003, 41:1523–1528.

    Article  PubMed  Google Scholar 

  32. Stolen KQ, Kemppainen J, Ukkonen H, et al.: Exercise training improves biventricular oxidative metabolism and left ventricular efficiency in patients with dilated cardiomyopathy. J Am Coll Cardiol 2003, 41:460–467. Demonstrated that in patients with dilated cardiomyopathy, endurance exercise training decreases oxidative metabolism in both ventricles and improves the efficiency of the LV. The study shows how quantitative PET measurements of metabolism can be used measure the effects of a specific therapy.

    Article  PubMed  CAS  Google Scholar 

  33. Bengel FM, Uerberfuhr P, Hesse T, et al.: Clinical determinants of ventricular sympathetic reinnervation after orthotopic heart transplantation. Circulation 2002, 106:831–835.

    Article  PubMed  Google Scholar 

  34. Di Carli MF, Bianco-Battlles D, Landa ME, et al.: Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999, 100:813–819.

    PubMed  CAS  Google Scholar 

  35. Mazzadi AN, Andre-Fouet X, Duisit J, et al.: Cardiac retention of carbon-11 HED in genotyped long QT patients: a potential amplifier role for the severity of the disease. Am J Physiol Heart Circ Physiol 2003, 2285:H1286-H1293. Demonstrated that in patients with mutations in the sodium and potassium channel genes and long QT syndrome heterogeneity in sympathetic innervation was increased. Beyond the mechanistic information, the study demonstrates the potential role of PET to characterize the phenotype of newly identified genetic disorders.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gropler, R.J., Soto, P. Recent advances in cardiac positron emission tomography in the clinical management of the cardiac patient. Curr Cardiol Rep 6, 20–26 (2004). https://doi.org/10.1007/s11886-004-0061-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-004-0061-4

Keywords

Navigation