Skip to main content

Advertisement

Log in

Lipoprotein Apheresis: Current Recommendations for Treating Familial Hypercholesterolemia and Elevated Lipoprotein(a)

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Familial hypercholesterolemia (FH) and hyperlipoproteinemia(a) are relatively common disorders, posing a significant health burden due to increased risk of atherosclerotic cardiovascular disease (ASCVD). Development of electronic health record–based strategies with a linkage to the genetic test results has increased awareness, detection, and control of heritable lipid disorders. This review attempts to critically examine available data to provide a summary of the current evidence for lipoprotein apheresis in FH and elevated lipoprotein(a) (Lp(a)).

Review Findings

Availability and indications for lipoprotein apheresis vary across the globe. On average, greater than 60% of atherogenic apoB-containing lipoproteins are immediately reduced following a single procedure, translating in substantial reduction of incident ASCVD events, and preventing accelerated vascular aging. Simultaneous lipid-lowering therapy targeting low-density lipoprotein (LDL) and Lp(a) enhances the efficacy of lipoprotein apheresis. Lipoprotein apheresis alters the proteomics of the lipoprotein particles, including reduction in the concentration of the oxidized-LDL and Lp(a) particles, and proinflammatory apoE bound to HDL particles and remnant lipoproteins. Other effects attributed to lipoprotein apheresis include improvement in blood rheology, endothelial function, microvascular flow, myocardial perfusion, reduction in circulating inflammatory markers. Development of lipoprotein apheresis registries provides data on benefits, challenges, and barriers to inform pertinent healthcare policies.

Summary

Lipoprotein apheresis is a safe and effective procedure for lowering cholesterol in patients with combined and isolated FH and elevated Lp(a). It reduces the burden of ASCVD and improves long-term prognosis. A team approach is required by the patient, medical staff, and healthcare provider to initiate and maintain a lipoprotein apheresis program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Safarova MS, Ezhov MV, Afanasieva OI, et al. Effect of specific lipoprotein(a) apheresis on coronary atherosclerosis regression assessed by quantitative coronary angiography. Atheroscler Suppl. 2013;14(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  2. de Gennes JL, Touraine R, Maunand B, Truffert J, Laudat P. Homozygous cutaneo-tendinous forms of hypercholesteremic xanthomatosis in an exemplary familial case. Trial of plasmapheresis ans heroic treatment. Bull Mem Soc Med Hop Paris. 1967;118(15):1377–402.

    PubMed  Google Scholar 

  3. Thompson GR, Lowenthal R, Myant NB. plasma exchange in the management of homozygous familial hypercholesterolaemia. Lancet. 1975;1(7918):1208–11.

    Article  CAS  PubMed  Google Scholar 

  4. Agishi T, Kaneko I, Hasuo Y, et al. Double filtration plasmapheresis. Trans Am Soc Artif Intern Organs. 1980;26:406–11.

    CAS  PubMed  Google Scholar 

  5. Stoffel W, Demant T. Selective removal of apolipoprotein B-containing serum lipoproteins from blood plasma. Proc Natl Acad Sci U S A. 1981;78(1):611–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pokrovsky SN, Adamova I, Afanasieva OY, Benevolenskaya GF. Immunosorbent for selective removal of lipoprotein (a) from human plasma: in vitro study. Artif Organs. 1991;15(2):136–40.

    Article  CAS  PubMed  Google Scholar 

  7. Wieland H, Seidel D. A simple specific method for precipitation of low density lipoproteins. J Lipid Res. 1983;24(7):904–9.

    Article  CAS  PubMed  Google Scholar 

  8. Jaeger BR. The HELP system for the treatment of atherothrombotic disorders: a review. Ther Apher Dial. 2003;7(4):391–6.

    Article  CAS  PubMed  Google Scholar 

  9. Mabuchi H, Michishita I, Takeda M, et al. A new low density lipoprotein apheresis system using two dextran sulfate cellulose columns in an automated column regenerating unit (LDL continuous apheresis). Atherosclerosis. 1987;68(1–2):19–25.

    Article  CAS  PubMed  Google Scholar 

  10. Kobayashi J, Katsube S, Shimoda M, et al. Single LDL apheresis improves serum remnant-like particle-cholesterol, C-reactive protein, and malondialdehyde-modified-low-density lipoprotein concentrations in Japanese hypercholesterolemic subjects. Clin Chim Acta. 2002;321(1–2):107–12.

    Article  CAS  PubMed  Google Scholar 

  11. Bosch T, Thiery J, Gurland HJ, Seidel D. Long-term efficiency, biocompatibility, and clinical safety of combined simultaneous LDL-apheresis and haemodialysis in patients with hypercholesterolaemia and end-stage renal failure. Nephrol Dial Transplant. 1993;8(12):1350–8.

    CAS  PubMed  Google Scholar 

  12. Padmanabhan A, Connelly-Smith L, Aqui N, et al. Guidelines on the use of therapeutic apheresis in clinical practice evidence-based approach from the writing committee of the American Society for Apheresis: The Eighth Special Issue. J Clin Apher. 2019;34(3):171–354.

    Article  PubMed  Google Scholar 

  13. Kroon AA, van Asten WN, Stalenhoef AF. Effect of apheresis of low-density lipoprotein on peripheral vascular disease in hypercholesterolemic patients with coronary artery disease. Ann Intern Med. 1996;125(12):945–54.

    Article  CAS  PubMed  Google Scholar 

  14. Thompson GR, Barbir M, Davies D, et al. Efficacy criteria and cholesterol targets for LDL apheresis. Atherosclerosis. 2010;208(2):317–21.

    Article  CAS  PubMed  Google Scholar 

  15. Baum SJ, Sampietro T, Datta D, et al. Effect of evolocumab on lipoprotein apheresis requirement and lipid levels: results of the randomized, controlled, open-label DE LAVAL study. J Clin Lipidol. 2019;13(6):901-909 e903.

    Article  PubMed  Google Scholar 

  16. Bambauer R, Bambauer C, Lehmann B, Latza R, Schiel R. LDL-apheresis: technical and clinical aspects. ScientificWorldJournal. 2012;2012:314283.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kroon AA, Aengevaeren WR, van der Werf T, et al. LDL-Apheresis Atherosclerosis Regression Study (LAARS). Effect of aggressive versus conventional lipid lowering treatment on coronary atherosclerosis. Circulation. 1996;93(10):1826–35.

    Article  CAS  PubMed  Google Scholar 

  18. Khan TZ, Hsu LY, Arai AE, et al. Apheresis as novel treatment for refractory angina with raised lipoprotein(a): a randomized controlled cross-over trial. Eur Heart J. 2017;38(20):1561–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. St. Jude Children's Research Hospital: central venous catheters. In. https://together.stjude.org/en-us/diagnosis-treatment/procedures/central-venous-catheters.html. Accessed 5 Nov 2022.

  20. Tavori H, Giunzioni I, Linton MF, Fazio S. Loss of plasma proprotein convertase subtilisin/kexin 9 (PCSK9) after lipoprotein apheresis. Circ Res. 2013;113(12):1290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Julius U, Milton M, Stoellner D, et al. Effects of lipoprotein apheresis on PCSK9 levels. Atheroscler Suppl. 2015;18:180–6.

    Article  CAS  PubMed  Google Scholar 

  22. Afanas’eva OI, Altynova EV, Boldyrev AG, Sokolov AA, Adamova IY, Pokrovskii SN. Comparative analysis of efficiency and specificity of various sorbents for apheresis of low-density lipoproteins. Bull Exp Biol Med. 2006;142(5):587–90.

    Article  CAS  PubMed  Google Scholar 

  23. Stefanutti C, Thompson GR. Lipoprotein apheresis in the management of familial hypercholesterolaemia: historical perspective and recent advances. Curr Atheroscler Rep. 2015;17(1):465.

    Article  PubMed  Google Scholar 

  24. Thompson GR. The scientific basis and future of lipoprotein apheresis. Ther Apher Dial. 2022;26(1):32–6.

    Article  PubMed  Google Scholar 

  25. Stefanutti C, Julius U, Watts GF, et al. Toward an international consensus-integrating lipoprotein apheresis and new lipid-lowering drugs. J Clin Lipidol. 2017;11(4):858-871 e853.

    Article  PubMed  Google Scholar 

  26. Dlouha D, Prochazkova I, Eretova Z, Hubacek JA, Parikova A, Pitha J. Influence of lipoprotein apheresis on circulating plasma levels of miRNAs in patients with high Lp(a). Atheroscler Suppl. 2019;40:12–6.

    Article  PubMed  Google Scholar 

  27. Visek J, Blaha M, Blaha V, et al. Monitoring of up to 15 years effects of lipoprotein apheresis on lipids, biomarkers of inflammation, and soluble endoglin in familial hypercholesterolemia patients. Orphanet J Rare Dis. 2021;16(1):110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moriarty PM, Gibson CA, Shih J, Matias MS. C-reactive protein and other markers of inflammation among patients undergoing HELP LDL apheresis. Atherosclerosis. 2001;158(2):495–8.

    Article  CAS  PubMed  Google Scholar 

  29. Eliaz I, Weil E, Dutton JA, McCalley AE, Nolte B, Moriarty PM. Lipoprotein apheresis reduces circulating galectin-3 in humans. J Clin Apher. 2016;31(4):388–92.

    Article  PubMed  Google Scholar 

  30. Moriarty PM, Gibson CA, Kensey KR, Hogenauer W. Effect of low-density lipoprotein cholesterol apheresis on blood viscosity. Am J Cardiol. 2004;93(8):1044–6.

    Article  CAS  PubMed  Google Scholar 

  31. Nakamura T, Ushiyama C, Osada S, Inoue T, Shimada N, Koide H. Effect of low-density lipoprotein apheresis on plasma endothelin-1 levels in diabetic hemodialysis patients with arteriosclerosis obliterans. J Diabetes Complications. 2003;17(6):349–54.

    Article  PubMed  Google Scholar 

  32. Spieker LE, Ruschitzka F, Badimon JJ, Noll G, Corti R. Shear stress-dependent platelet function after LDL cholesterol apheresis. Thromb Res. 2004;113(6):395–8.

    Article  CAS  PubMed  Google Scholar 

  33. Kojima S. Low-density lipoprotein apheresis and changes in plasma components. Ther Apher. 2001;5(4):232–8.

    Article  CAS  PubMed  Google Scholar 

  34. Kobayashi S, Moriya H, Negishi K, Maesato K, Ohtake T. LDL-apheresis up-regulates VEGF and IGF-I in patients with ischemic limb. J Clin Apher. 2003;18(3):115–9.

    Article  PubMed  Google Scholar 

  35. Julius U, Metzler W, Pietzsch J, Fassbender T, Klingel R. Intraindividual comparison of two extracorporeal LDL apheresis methods: lipidfiltration and HELP. Int J Artif Organs. 2002;25(12):1180–8.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Blessing F, Walli AK, Uberfuhr P, Fraunberger P, Seidel D. Effects of heparin-mediated extracorporeal low-density lipoprotein precipitation beyond lowering proatherogenic lipoproteins–reduction of circulating proinflammatory and procoagulatory markers. Atherosclerosis. 2004;175(1):145–50.

    Article  CAS  PubMed  Google Scholar 

  37. Empen K, Otto C, Brodl UC, Parhofer KG. The effects of three different LDL-apheresis methods on the plasma concentrations of E-selectin, VCAM-1, and ICAM-1. J Clin Apher. 2002;17(1):38–43.

    Article  PubMed  Google Scholar 

  38. Stefanutti C, Mazza F, Pasqualetti D, et al. Lipoprotein apheresis downregulates IL-1alpha, IL-6 and TNF-alpha mRNA expression in severe dyslipidaemia. Atheroscler Suppl. 2017;30:200–8.

    Article  PubMed  Google Scholar 

  39. Lappegard KT, Kjellmo CA, Ljunggren S, et al. Lipoprotein apheresis affects lipoprotein particle subclasses more efficiently compared to the PCSK9 inhibitor evolocumab, a pilot study. Transfus Apher Sci. 2018;57(1):91–6.

    Article  PubMed  Google Scholar 

  40. Orsoni A, Saheb S, Levels JHM, et al. LDL-apheresis depletes apoE-HDL and pre-beta1-HDL in familial hypercholesterolemia: relevance to atheroprotection. J Lipid Res. 2011;52(12):2304–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mabuchi H, Koizumi J, Shimizu M, et al. Long-term efficacy of low-density lipoprotein apheresis on coronary heart disease in familial hypercholesterolemia. Hokuriku-FH-LDL-Apheresis Study Group Am J Cardiol. 1998;82(12):1489–95.

    CAS  Google Scholar 

  42. Bambauer R, Schiel R, Latza R. Low-density lipoprotein apheresis: an overview. Ther Apher Dial. 2003;7(4):382–90.

    Article  CAS  PubMed  Google Scholar 

  43. Thompsen J, Thompson PD. A systematic review of LDL apheresis in the treatment of cardiovascular disease. Atherosclerosis. 2006;189(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  44. Borberg H. 26 years of LDL–apheresis: a review of experience. Transfus Apher Sci. 2009;41(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  45. Gordon BR, Kelsey SF, Dau PC, et al. Long-term effects of low-density lipoprotein apheresis using an automated dextran sulfate cellulose adsorption system. Liposorber Study Group Am J Cardiol. 1998;81(4):407–11.

    Article  CAS  Google Scholar 

  46. Moriarty PM, Gray JV, Gorby LK. Lipoprotein apheresis for lipoprotein(a) and cardiovascular disease. J Clin Lipidol. 2019;13(6):894–900.

    Article  PubMed  Google Scholar 

  47. Wu MD, Moccetti F, Brown E, et al. Lipoprotein apheresis acutely reverses coronary microvascular dysfunction in patients with severe hypercholesterolemia. JACC Cardiovasc Imaging. 2019;12(8 Pt 1):1430–40.

    Article  PubMed  Google Scholar 

  48. Moriarty PM. Lipoprotein apheresis: present and future uses. Curr Opin Lipidol. 2015;26(6):544–52.

    Article  CAS  PubMed  Google Scholar 

  49. Tamai O, Matsuoka H, Itabe H, Wada Y, Kohno K, Imaizumi T. Single LDL apheresis improves endothelium-dependent vasodilatation in hypercholesterolemic humans. Circulation. 1997;95(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  50. Aengevaeren WR, Kroon AA, Stalenhoef AF, Uijen GJ, van der Werf T. Low density lipoprotein apheresis improves regional myocardial perfusion in patients with hypercholesterolemia and extensive coronary artery disease. LDL-Apheresis Atherosclerosis Regression Study (LAARS). J Am Coll Cardiol. 1996;28(7):1696–704.

    Article  CAS  PubMed  Google Scholar 

  51. Sato M, Amano I. Changes in oxidative stress and microcirculation by low-density lipoprotein apheresis. Ther Apher Dial. 2003;7(4):419–24.

    Article  CAS  PubMed  Google Scholar 

  52. Tsurumi-Ikeya Y, Tamura K, Azuma K, et al. Sustained inhibition of oxidized low-density lipoprotein is involved in the long-term therapeutic effects of apheresis in dialysis patients. Arterioscler Thromb Vasc Biol. 2010;30(5):1058–65.

    Article  CAS  PubMed  Google Scholar 

  53. Hara T, Kiyomoto H, Hitomi H, et al. Low-density lipoprotein apheresis for haemodialysis patients with peripheral arterial disease reduces reactive oxygen species production via suppression of NADPH oxidase gene expression in leucocytes. Nephrol Dial Transplant. 2009;24(12):3818–25.

    Article  CAS  PubMed  Google Scholar 

  54. van Wijk DF, Sjouke B, Figueroa A, et al. Nonpharmacological lipoprotein apheresis reduces arterial inflammation in familial hypercholesterolemia. J Am Coll Cardiol. 2014;64(14):1418–26.

    Article  PubMed  Google Scholar 

  55. Banerjee S, Luo P, Reda DJ, et al. Plaque Regression and Endothelial Progenitor Cell Mobilization With Intensive Lipid Elimination Regimen (PREMIER). Circ Cardiovasc Interv. 2020;13(8):e008933.

    Article  CAS  PubMed  Google Scholar 

  56. Poller WC, Berger A, Dreger H, Morgera S, Enke-Melzer K. Lipoprotein apheresis in patients with peripheral artery disease and lipoprotein(a)-hyperlipoproteinemia: 2-year follow-up of a prospective single center study. Atheroscler Suppl. 2017;30:174–9.

    Article  PubMed  Google Scholar 

  57. Thompson GR, Blom DJ, Marais AD, Seed M, Pilcher GJ, Raal FJ. Survival in homozygous familial hypercholesterolaemia is determined by the on-treatment level of serum cholesterol. Eur Heart J. 2018;39(14):1162–8.

    Article  CAS  PubMed  Google Scholar 

  58. Kolovou G, Hatzigeorgiou G, Mihas C, et al. Changes in lipids and lipoproteins after selective LDL apheresis (7-year experience). Cholesterol. 2012;2012:976578.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Masaki N, Tatami R, Kumamoto T, et al. Ten-year follow-up of familial hypercholesterolemia patients after intensive cholesterol-lowering therapy. Int Heart J. 2005;46(5):833–43.

    Article  PubMed  Google Scholar 

  60. Safarova MS, Nugent AK, Gorby L, Dutton JA, Thompson WJ, Moriarty PM. Effect of lipoprotein apheresis on progression of carotid intima-media thickness in patients with severe hypercholesterolemia. Am J Cardiol. 2022;177:22–7.

    Article  CAS  PubMed  Google Scholar 

  61. Cherepanov D, Bentley TGK, Hsiao W, et al. Real-world cardiovascular disease burden in patients with atherosclerotic cardiovascular disease: a comprehensive systematic literature review. Curr Med Res Opin. 2018;34(3):459–73.

    Article  CAS  PubMed  Google Scholar 

  62. Jaeger BR, Richter Y, Nagel D, et al. Longitudinal cohort study on the effectiveness of lipid apheresis treatment to reduce high lipoprotein(a) levels and prevent major adverse coronary events. Nat Clin Pract Cardiovasc Med. 2009;6(3):229–39.

    CAS  PubMed  Google Scholar 

  63. Thompson GR. LDL apheresis. Atherosclerosis. 2003;167(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  64. •• Leebmann J, Roeseler E, Julius U, et al. Lipoprotein apheresis in patients with maximally tolerated lipid-lowering therapy, lipoprotein(a)-hyperlipoproteinemia, and progressive cardiovascular disease: prospective observational multicenter study. Circulation. 2013;128(24):2567–76. (This prospective multi-center study demonstrated significant reduction in cardiovascaulr events in patients with elevated Lp(a) treated with lipoprotein apheresis on the background of maximally tolerated lipid-lowering therapy.)

    Article  CAS  PubMed  Google Scholar 

  65. Schatz U, Tselmin S, Muller G, et al. Most significant reduction of cardiovascular events in patients undergoing lipoproteinapheresis due to raised Lp(a) levels - a multicenter observational study. Atheroscler Suppl. 2017;30:246–52.

    Article  CAS  PubMed  Google Scholar 

  66. Safarova MS, Kullo IJ. My approach to the patient with familial hypercholesterolemia. Mayo Clin Proc. 2016;91(6):770–86.

    Article  PubMed  Google Scholar 

  67. • Beheshti SO, Madsen CM, Varbo A, Nordestgaard BG. Worldwide prevalence of familial hypercholesterolemia: meta-analyses of 11 million subjects. J Am Coll Cardiol. 2020;75(20):2553–66. (Findings from this analysis showed high prevalence (1:313) of familial hypercholesterolemia worldwide.•)

    Article  CAS  PubMed  Google Scholar 

  68. Tsimikas S, Marcovina SM. Ancestry, lipoprotein(a), and cardiovascular risk thresholds: JACC Review Topic of the Week. J Am Coll Cardiol. 2022;80(9):934–46.

    Article  CAS  PubMed  Google Scholar 

  69. Hedegaard BS, Bork CS, Kaltoft M, et al. Equivalent impact of elevated lipoprotein(a) and familial hypercholesterolemia in patients with atherosclerotic cardiovascular disease. J Am Coll Cardiol. 2022;80(21):1998–2010.

    Article  CAS  PubMed  Google Scholar 

  70. Raitakari O, Kartiosuo N, Pahkala K, et al: Lipoprotein(a) in youth and prediction of major cardiovascular outcomes in adulthood. Circulation 2023;147(1):23–31.

  71. O’Donoghue ML, Fazio S, Giugliano RP, et al. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk. Circulation. 2019;139(12):1483–92.

    Article  CAS  PubMed  Google Scholar 

  72. • Schwartz GG, Szarek M, Bittner VA, et al. Lipoprotein(a) and benefit of PCSK9 inhibition in patients with nominally controlled LDL cholesterol. J Am Coll Cardiol. 2021;78(5):421–33. (Findings from this study demonstrated that in patients with LDL-C near 70 mg/dL on a statin, there is incremenatal clinical benefit from PCSK9 inhibitors only when Lp(a) was elevated.•)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. De Marchis GM, Dittrich TD, Malik R, et al: Genetic proxies for PCSK9 inhibition associate with lipoprotein(a): effects on coronary artery disease and ischemic stroke. Atherosclerosis 2022;361:41–6.

  74. Safarova MS, Kullo IJ. Lipoprotein(a) lowering and cardiovascular risk reduction by PCSK9 inhibitors. Atherosclerosis. 2022;361:30–1.

    Article  CAS  PubMed  Google Scholar 

  75. Ezhov MV, Safarova MS, Afanasieva OI, et al. Specific lipoprotein(a) apheresis attenuates progression of carotid intima-media thickness in coronary heart disease patients with high lipoprotein(a) levels. Atheroscler Suppl. 2015;18:163–9.

    Article  CAS  PubMed  Google Scholar 

  76. Roeseler E, Julius U, Heigl F, et al. Lipoprotein apheresis for lipoprotein(a)-associated cardiovascular disease: prospective 5 years of follow-up and apolipoprotein(a) characterization. Arterioscler Thromb Vasc Biol. 2016;36(9):2019–27.

    Article  CAS  PubMed  Google Scholar 

  77. Abe T, Matsuo H, Abe R, et al. The Japanese Society for Apheresis clinical practice guideline for therapeutic apheresis. Ther Apher Dial. 2021;25(6):728–876.

    Article  PubMed  Google Scholar 

  78. Civeira F. International Panel on Management of Familial H: guidelines for the diagnosis and management of heterozygous familial hypercholesterolemia. Atherosclerosis. 2004;173(1):55–68.

    Article  CAS  PubMed  Google Scholar 

  79. Watts GF, Sullivan DR, Poplawski N, et al. Familial hypercholesterolaemia: a model of care for Australasia. Atheroscler Suppl. 2011;12(2):221–63.

    Article  PubMed  Google Scholar 

  80. Schettler V, Neumann CL, Hulpke-Wette M, et al. Current view: indications for extracorporeal lipid apheresis treatment. Clin Res Cardiol Suppl. 2012;7(1):15–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thompson G, Parhofer KG. Current role of lipoprotein apheresis. Curr Atheroscler Rep. 2019;21(7):26.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nugent AK, Gray JV, Gorby LK, Moriarty PM. Lipoprotein apheresis: first FDA indicated treatment for elevated lipoprotein(a). J Clin Cardiol. 2020;1(1):16–21.

    Google Scholar 

  83. Kayikcioglu M. LDL Apheresis and Lp (a) apheresis: a clinician’s perspective. Curr Atheroscler Rep. 2021;23(4):15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Medical Advisory S. Low-density lipoprotein apheresis: an evidence-based analysis. Ont Health Technol Assess Ser. 2007;7(5):1–101.

    Google Scholar 

  85. Familial hypercholesterolaemia: identification and management. NICE Clinical guideline [CG71]. https://www.nice.org.uk/guidance/cg71/chapter/Recommendations. Accessed 5 Nov 2022.

  86. Cheeley MK, Saseen JJ, Agarwala A, et al. NLA scientific statement on statin intolerance: a new definition and key considerations for ASCVD risk reduction in the statin intolerant patient. J Clin Lipidol. 2022;16(4):361–75.

    Article  PubMed  Google Scholar 

  87. Warden BA, Miles JR, Oleaga C, et al. Unusual responses to PCSK9 inhibitors in a clinical cohort utilizing a structured follow-up protocol. Am J Prev Cardiol. 2020;1:100012.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Reyes-Soffer G, Ginsberg HN, Berglund L, et al: Lipoprotein(a): a genetically determined, causal, and prevalent risk factor for atherosclerotic cardiovascular disease: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol. 2022;42(1):e48-60.

  89. Kaneka Pharma America (KPA) Corp. LIPOSORBER LA-15 system. Labeling change - indications/instructions/shelf life/tradename. U.S. Food and Drug Administration. Center for Devices and Radiological Health PMA Number P910018; Supplement Number S027. 2020. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P910018S027. Accessed July 30, 2022.

  90. Writing Committee; Lloyd-Jones DM, Morris PB, et al: 2022 ACC expert consensus decision pathway on the role of nonstatin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol 2022, 80(14):1366–1418.

  91. Schettler VJJ, Neumann CL, Peter C, et al. Lipoprotein apheresis is an optimal therapeutic option to reduce increased Lp(a) levels. Clin Res Cardiol Suppl. 2019;14(Suppl 1):33–8.

    Article  CAS  PubMed  Google Scholar 

  92. Watts GF, Gidding S, Wierzbicki AS, et al. Integrated guidance on the care of familial hypercholesterolaemia from the International FH Foundation. Int J Cardiol. 2014;171(3):309–25.

    Article  PubMed  Google Scholar 

  93. Eapen DJ, Valiani K, Reddy S, Sperling L. Management of familial hypercholesterolemia during pregnancy: case series and discussion. J Clin Lipidol. 2012;6(1):88–91.

    Article  PubMed  Google Scholar 

  94. Blaha M, Lanska M, Blaha V, Boudys L, Zak P. Pregnancy in homozygous familial hypercholesterolemia–importance of LDL-apheresis. Atheroscler Suppl. 2015;18:134–9.

    Article  CAS  PubMed  Google Scholar 

  95. Cashin-Hemphill L, Noone M, Abbott JF, Waksmonski CA, Lees RS. Low-density lipoprotein apheresis therapy during pregnancy. Am J Cardiol. 2000;86(10):1160.

    Article  CAS  PubMed  Google Scholar 

  96. Al-Dughaishi T, Al-Waili K, Banerjee Y, et al. Successful direct adsorption of lipoproteins (DALI) apheresis during pregnancy in an Omani woman with homozygous familial hypercholesterolemia. Open Cardiovasc Med J. 2015;9:114–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Klingel R, Gohlen B, Schwarting A, Himmelsbach F, Straube R. Differential indication of lipoprotein apheresis during pregnancy. Ther Apher Dial. 2003;7(3):359–64.

    Article  PubMed  Google Scholar 

  98. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111–88.

    Article  PubMed  Google Scholar 

  99. Filler G, Lee M, Hegele RA. Barriers to the implementation of lipoprotein apheresis in Canada. Can J Cardiol. 2017;33(3):409–11.

    Article  PubMed  Google Scholar 

  100. Wang A, Richhariya A, Gandra SR, et al: Systematic review of low-density lipoprotein cholesterol apheresis for the treatment of familial hypercholesterolemia. J Am Heart Assoc. 2016;5(7):e003294.

  101. Vishwanath R, Hemphill LC. Familial hypercholesterolemia and estimation of US patients eligible for low-density lipoprotein apheresis after maximally tolerated lipid-lowering therapy. J Clin Lipidol. 2014;8(1):18–28.

    Article  PubMed  Google Scholar 

  102. Thompson GR, Catapano A, Saheb S, et al. Severe hypercholesterolaemia: therapeutic goals and eligibility criteria for LDL apheresis in Europe. Curr Opin Lipidol. 2010;21(6):492–8.

    Article  CAS  PubMed  Google Scholar 

  103. Lee WP, Datta BN, Ong BB, Rees A, Halcox J. Defining the role of lipoprotein apheresis in the management of familial hypercholesterolemia. Am J Cardiovasc Drugs. 2011;11(6):363–70.

    Article  CAS  PubMed  Google Scholar 

  104. Hasnie AA, Kumbamu A, Safarova MS, Caraballo PJ, Kullo IJ. A clinical decision support tool for familial hypercholesterolemia based on physician input. Mayo Clin Proc Innov Qual Outcomes. 2018;2(2):103–12.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bangash H, Pencille L, Gundelach JH, et al: An implementation science framework to develop a clinical decision support tool for familial hypercholesterolemia. J Pers Med. 2020;10(3):67.

  106. Schettler VJ, Neumann CL, Peter C, et al. Impact of the German Lipoprotein Apheresis Registry (DLAR) on therapeutic options to reduce increased Lp(a) levels. Clin Res Cardiol Suppl. 2015;10:14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pottle A, Thompson G, Barbir M, et al. Lipoprotein apheresis efficacy, challenges and outcomes: a descriptive analysis from the UK Lipoprotein Apheresis Registry, 1989–2017. Atherosclerosis. 2019;290:44–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya S. Safarova.

Ethics declarations

Conflict of Interest

Patrick M. Moriarty is a consultant for Kaneka Company, Osaka Japan. Maya S. Safarova has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarova, M.S., Moriarty, P.M. Lipoprotein Apheresis: Current Recommendations for Treating Familial Hypercholesterolemia and Elevated Lipoprotein(a). Curr Atheroscler Rep 25, 391–404 (2023). https://doi.org/10.1007/s11883-023-01113-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-023-01113-2

Keywords

Navigation