Skip to main content

Advertisement

Log in

An Update on the Utility of Coronary Artery Calcium Scoring for Coronary Heart Disease and Cardiovascular Disease Risk Prediction

  • Coronary Heart Disease (S. Virani and S. Naderi, Section Editors)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Estimating cardiovascular disease (CVD) risk is necessary for determining the potential net benefit of primary prevention pharmacotherapy. Risk estimation relying exclusively on traditional CVD risk factors may misclassify risk, resulting in both undertreatment and overtreatment. Coronary artery calcium (CAC) scoring personalizes risk prediction through direct visualization of calcified coronary atherosclerotic plaques and provides improved accuracy for coronary heart disease (CHD) or CVD risk estimation. In this review, we discuss the most recent studies on CAC, which unlike historical studies, focus sharply on clinical application. We describe the MESA CHD risk calculator, a recently developed CAC-based 10-year CHD risk estimator, which can help guide preventive therapy allocation by better identifying both high- and low-risk individuals. In closing, we discuss calcium density, regional distribution of CAC, and extra-coronary calcification, which represent the future of CAC and CVD risk assessment research and may lead to further improvements in risk prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACC/AHA:

American College of Cardiology/American Heart Association

ASCVD:

Atherosclerotic cardiovascular disease

CAC:

Coronary artery calcium

CAC = 0:

Coronary artery calcium score of zero

CHD:

Coronary heart disease

CTA:

Computed tomographic angiography

CVD:

Cardiovascular disease

DHS:

Dallas Heart Study

ECC:

Extra-coronary calcification

HRS:

Heinz-Nixdorf Recall Study

MESA:

Multiethnic Study of Atherosclerosis

PCE:

Pooled Cohort Equations

cPCE:

Recalibrated Pooled Cohort Equations

ROC:

Receiver-operator characteristic

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2015 update: a report from the American Heart Association. Circulation. 2015;131(4), e29.

    Article  PubMed  Google Scholar 

  2. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S1–45.

    Article  PubMed  Google Scholar 

  3. Goff Jr DC, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino Sr RB, Gibbons R, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2935–59.

    Article  PubMed  Google Scholar 

  4. Rodriguez K, Kwan AC, Lai S, Lima JA, Vigneault D, Sandfort V, et al. Coronary plaque burden at coronary CT angiography in asymptomatic men and women. Radiology. 2015;277(1):73–80.

    Article  PubMed  Google Scholar 

  5. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827–32.

    Article  CAS  PubMed  Google Scholar 

  6. McEvoy JW, Diamond GA, Detrano RC, Kaul S, Blaha MJ, Blumenthal RS, et al. Risk and the physics of clinical prediction. Am J Cardiol. 2014;113(8):1429–35.

    Article  PubMed  Google Scholar 

  7. Blaha MJ, Silverman MG, Budoff MJ. Is there a role for coronary artery calcium scoring for management of asymptomatic patients at risk for coronary artery disease? Clinical risk scores are not sufficient to define primary prevention treatment strategies among asymptomatic patients. Circ Cardiovasc Imaging. 2014;7(2):398–408. This review explained that CAC is, at the present time, superior to any combination of risk factors and serum biomarkers.

    Article  PubMed  Google Scholar 

  8. Patel J, Al Rifai M, Blaha MJ, Budoff MJ, Post WS, Polak JF, et al. Coronary artery calcium improves risk assessment in adults with a family history of premature coronary heart disease results from multiethnic study of atherosclerosis. Circ Cardiovasc Imaging. 2015;8(6), e003186. Demonstrates that those with a positive family history of premature CHD but CAC = 0 remain at low 10-year risk.

    Article  PubMed  Google Scholar 

  9. Amin NP, Martin SS, Blaha MJ, Nasir K, Blumenthal RS, Michos ED. Headed in the right direction but at risk for miscalculation: a critical appraisal of the 2013 ACC/AHA risk assessment guidelines. J Am Coll Cardiol. 2014;63(25_PA):2789–94.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Shah NP, Cainzos-Achirica M, Feldman DI, Blumenthal RS, Nasir K, Miner MM, Billups KL, Blaha MJ. Cardiovascular Disease Prevention in Men with Vascular Erectile Dysfunction: The View of the Preventive Cardiologist. The American journal of medicine. 2015

  11. Kanaya AM, Kandula NR, Ewing SK, Herrington D, Liu K, Blaha MJ, et al. Comparing coronary artery calcium among US South Asians with four racial/ethnic groups: the MASALA and MESA studies. Atherosclerosis. 2014;234(1):102–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Alluri K, Joshi PH, Henry TS, Blumenthal RS, Nasir K, Blaha MJ. Scoring of coronary artery calcium scans: history, assumptions, current limitations, and future directions. Atherosclerosis. 2015;239(1):109–17.

    Article  CAS  PubMed  Google Scholar 

  13. Nasir K, Bittencourt MS, Blaha MJ, Blankstein R, Agatson AS, Rivera JJ, et al. Implications of coronary artery calcium testing among statin candidates according to American College of Cardiology/American Heart Association cholesterol management guidelines: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2015;66(15):1657–68. Demonstrates that the CAC = 0 can down-reclassify the risk for those who are considered eligible for statin therapy as per the new ACC/AHA Prevention Guidelines.

    Article  CAS  PubMed  Google Scholar 

  14. Yeboah J, Polonsky TS, Young R, McClelland RL, Delaney JC, Dawood F, et al. Utility of nontraditional risk markers in individuals ineligible for statin therapy according to the 2013 American College of Cardiology/American Heart Association Cholesterol Guidelines. Circulation. 2015;132(10):916–22. Demonstrates that CAC recommendations by the ACC/AHA cholesterol guidelines are superior for identifying unheralded risk in low-risk individuals not otherwise elligible for statin therapy.

    Article  CAS  PubMed  Google Scholar 

  15. Silverman MG, Blaha MJ, Krumholz HM, Budoff MJ, Blankstein R, Sibley CT, et al. Impact of coronary artery calcium on coronary heart disease events in individuals at the extremes of traditional risk factor burden: the Multi-Ethnic Study of Atherosclerosis. Eur Heart J. 2014;35(33):2232–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Shaw LJ, Giambrone AE, Blaha MJ, Knapper JT, Berman DS, Bellam N, et al. Long-term prognosis after coronary artery calcification testing in asymptomatic patients: a cohort study. Ann Intern Med. 2015;163(1):14–21. Extended the predictability of CAC to 15 years.

    Article  PubMed  Google Scholar 

  17. Gibson AO, Blaha MJ, Arnan MK, Sacco RL, Szklo M, Herrington DM, et al. Coronary artery calcium and incident cerebrovascular events in an asymptomatic cohort: the MESA study. J Am Coll Cardiol Img. 2014;7(11):1108–15. Demonstrated CAC as an independent predictor of cerebrovascular events among asymptomatic individuals.

    Article  Google Scholar 

  18. Valenti V, ó Hartaigh B, Gransar H, Cho I, Schulman-Marcus J, Heo R, et al. A 15-year warranty period for asymptomatic individuals without coronary artery calcium: a prospective follow-up of 9,715 individuals. J Am Coll Cardiol. 2015;65(10_S). Extended the predictability of CAC to 15 years.

  19. Martin SS, Sperling LS, Blaha MJ, Wilson PW, Gluckman TJ, Blumenthal RS, et al. Clinician-patient risk discussion for atherosclerotic cardiovascular disease prevention: importance to implementation of the 2013 ACC/AHA guidelines. J Am Coll Cardiol. 2015;65(13):1361–8.

    Article  PubMed  Google Scholar 

  20. Yeboah J, McClelland RL, Polonsky TS, Burke GL, Sibley CT, O’Leary D, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308(8):788–95. Demonstrated that CAC provides superior discrimination and risk classification (using net reclassification index) compared with family history and other subclinical biomarkers.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Elias-Smale SE, Proença RV, Koller MT, Kavousi M, van Rooij FJ, Hunink MG, et al. Coronary calcium score improves classification of coronary heart disease risk in the elderly: the Rotterdam study. J Am Coll Cardiol. 2010;56(17):1407–14.

    Article  PubMed  Google Scholar 

  22. Tota-Maharaj R, Blaha MJ, Blankstein R, Silverman MG, Eng J, Shaw LJ, et al. Association of coronary artery calcium and coronary heart disease events in young and elderly participants in the multi-ethnic study of atherosclerosis: a secondary analysis of a prospective, population-based cohort. Mayo Clin Proc. 2014;89(10):1350–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Paixao AR, Ayers CR, El Sabbagh A, Sanghavi M, Berry JD, Rohatgi A, Kumbhani DJ, McGuire DK, Das SR, de Lemos JA. Coronary Artery Calcium Improves Risk Classification in Younger Populations. JACC: Cardiovascular Imaging. 2015

  24. Patel J, Blaha MJ, McEvoy JW, Qadir S, Tota-Maharaj R, Shaw LJ, et al. All-cause mortality in asymptomatic persons with extensive Agatston scores above 1000. J Cardiovasc Comput Tomogr. 2014;8(1):26–32.

    Article  PubMed  Google Scholar 

  25. DeFilippis AP, Young R, Carrubba CJ, McEvoy JW, Budoff MJ, Blumenthal RS, et al. An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort. Ann Intern Med. 2015;162(4):266–75. Showed that most risk scores overestimate risk in modern cohorts, suggesting that it is necessary to calibrate risk in research or clinical practice.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Pencina MJ, Navar-Boggan AM, D’Agostino Sr RB, Williams K, Neely B, Sniderman AD, et al. Application of new cholesterol guidelines to a population-based sample. N Engl J Med. 2014;370(15):1422–31.

    Article  CAS  PubMed  Google Scholar 

  27. Bittencourt MS, Blaha MJ, Blankstein R, Budoff M, Vargas JD, Blumenthal RS, et al. Polypill therapy, subclinical atherosclerosis, and cardiovascular events-implications for the use of preventive pharmacotherapy: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2014;63(5):434–43.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Rozanski A, Gransar H, Shaw LJ, Kim J, Miranda-Peats L, Wong ND, et al. Impact of coronary artery calcium scanning on coronary risk factors and downstream testing: the EISNER (Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research) prospective randomized trial. J Am Coll Cardiol. 2011;57(15):1622–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sanz J. Coronary calcium score and the new guidelines: back to square one? J Am Coll Cardiol. 2015;66(15):1669–71.

    Article  PubMed  Google Scholar 

  30. Lloyd-Jones DM. Coronary artery calcium scoring: are we there yet? J Am Coll Cardiol. 2015;66(15):1654–6.

    Article  PubMed  Google Scholar 

  31. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res. 2005;96(9):939–49.

    Article  CAS  PubMed  Google Scholar 

  32. Friis-Møller N, Weber R, Reiss P, Thiébaut R, Kirk O, Monforte ADA, et al. Cardiovascular disease risk factors in HIV patients–association with antiretroviral therapy. Results from the DAD study. AIDS. 2003;17(8):1179–93.

    Article  PubMed  Google Scholar 

  33. Polonsky TS, McClelland RL, Jorgensen NW, Bild DE, Burke GL, Guerci AD, et al. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA. 2010;303(16):1610–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the American Society of Echocardiography, American Society of Nuclear Cardiology, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2010;56(25):e50–103.

    Article  PubMed  Google Scholar 

  35. Miedema MD, Duprez DA, Misialek JR, Blaha MJ, Nasir K, Silverman MG, et al. Use of coronary artery calcium testing to guide aspirin utilization for primary prevention: estimates from the multi-ethnic study of atherosclerosis. Circ Cardiovasc Qual Outcomes. 2014;7(3):453–60.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Budoff MJ, Shaw LJ, Liu ST, Weinstein SR, Mosler TP, Tseng PH, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49(18):1860–70.

    Article  PubMed  Google Scholar 

  37. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.

    Article  CAS  PubMed  Google Scholar 

  38. Erbel R, Mohlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang A, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol. 2010;56(17):1397–406.

    Article  PubMed  Google Scholar 

  39. McClelland RL, Jorgensen NW, Budoff M, Blaha MJ, Post WS, Kronmal RA, et al. 10-year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Study). J Am Coll Cardiol. 2015;66(15):1643–53. This is the publication of the MESA risk score, which is the first tool for calculating 10-year CHD risk after CAC scoring. The MESA risk score can help guide the risk discussion between clinicians and patients.

    Article  CAS  PubMed  Google Scholar 

  40. Schmermund A, Möhlenkamp S, Stang A, Grönemeyer D, Seibel R, Hirche H, et al. Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf RECALL Study. Am Heart J. 2002;144(2):212–8.

    Article  PubMed  Google Scholar 

  41. Victor RG, Haley RW, Willett DL, Peshock RM, Vaeth PC, Leonard D, et al. The Dallas Heart Study: a population-based probability sample for the multidisciplinary study of ethnic differences in cardiovascular health. Am J Cardiol. 2004;93(12):1473–80.

    Article  PubMed  Google Scholar 

  42. Robbins JM, Petrone AB, Carr JJ, Pankow JS, Hunt SC, Heiss G, et al. Association of ideal cardiovascular health and calcified atherosclerotic plaque in the coronary arteries: The National Heart, Lung, and Blood Institute Family Heart Study. Am Heart J. 2015;169(3):371–8. e371.

    Article  PubMed  Google Scholar 

  43. Gepner AD, Young R, Delaney JA, Tattersall MC, Blaha MJ, Post WS, et al. Comparison of coronary artery calcium presence, carotid plaque presence, and carotid intima-media thickness for cardiovascular disease prediction in the multi-ethnic study of atherosclerosis. Circ Cardiovasc Qual Outcomes. 2015;8(1), e002262.

    Google Scholar 

  44. LaMonte MJ, FitzGerald SJ, Church TS, Barlow CE, Radford NB, Levine BD, et al. Coronary artery calcium score and coronary heart disease events in a large cohort of asymptomatic men and women. Am J Epidemiol. 2005;162(5):421–9.

    Article  PubMed  Google Scholar 

  45. Tison GH, Guo M, Blaha MJ, McClelland RL, Allison MA, Szklo M, et al. Multisite extracoronary calcification indicates increased risk of coronary heart disease and all-cause mortality: The Multi-Ethnic Study of Atherosclerosis. J Cardiovasc Comput Tomogr. 2015;9(5):406–14. First paper that showed that multi-site ECC is incrementally predictive of CHD and total mortality in asymptomatic individuals.

    Article  PubMed  Google Scholar 

  46. Criqui MH, Denenberg JO, Ix JH, McClelland RL, Wassel CL, Rifkin DE, et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA. 2014;311(3):271–8. Demonstrated that CAC density is protective for CHD/CVD risk, whereas CAC volume increases the risk, challenging traditional dogma established by the Agatston Score in 1990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Abedin M, Tintut Y, Demer LL. Vascular calcification mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol. 2004;24(7):1161–70.

    Article  CAS  PubMed  Google Scholar 

  48. Nance Jr JW, Schlett CL, Schoepf UJ, Oberoi S, Leisy HB, Barraza Jr JM, et al. Incremental prognostic value of different components of coronary atherosclerotic plaque at cardiac CT angiography beyond coronary calcification in patients with acute chest pain. Radiology. 2012;264(3):679–90.

    Article  PubMed  Google Scholar 

  49. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50(4):319–26.

    Article  PubMed  Google Scholar 

  50. Kim SY, Kim K-S, Seung MJ, Chung JW, Kim JH, Mun SH, et al. The culprit lesion score on multi-detector computed tomography can detect vulnerable coronary artery plaque. Int J Cardiovasc Imaging. 2010;26(2):245–52.

    Article  PubMed  Google Scholar 

  51. Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, Fukuda D, et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation. 2004;110(22):3424–9.

    Article  PubMed  Google Scholar 

  52. Yamamoto H, Kitagawa T, Ohashi N, Utsunomiya H, Kunita E, Oka T, et al. Noncalcified atherosclerotic lesions with vulnerable characteristics detected by coronary CT angiography and future coronary events. J Cardiovasc Comput Tomogr. 2013;7(3):192–9.

    Article  PubMed  Google Scholar 

  53. Otsuka K, Fukuda S, Tanaka A, Nakanishi K, Taguchi H, Yoshikawa J, et al. Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome. JACC Cardiovasc Imaging. 2013;6(4):448–57.

    Article  PubMed  Google Scholar 

  54. Sangiorgi G, Rumberger JA, Severson A, Edwards WD, Gregoire J, Fitzpatrick LA, et al. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol. 1998;31(1):126–33.

    Article  CAS  PubMed  Google Scholar 

  55. Leber AW, Knez A, White CW, Becker A, von Ziegler F, Muehling O, et al. Composition of coronary atherosclerotic plaques in patients with acute myocardial infarction and stable angina pectoris determined by contrast-enhanced multislice computed tomography. Am J Cardiol. 2003;91(6):714–8.

    Article  PubMed  Google Scholar 

  56. Shemesh J, Apter S, Itzchak Y, Motro M. Coronary calcification compared in patients with acute versus in those with chronic coronary events by using dual-sector spiral CT 1. Radiology. 2003;226(2):483–8.

    Article  PubMed  Google Scholar 

  57. Inoue K, Motoyama S, Sarai M, Sato T, Harigaya H, Hara T, et al. Serial coronary CT angiography–verified changes in plaque characteristics as an end point: evaluation of effect of statin intervention. J Am Coll Cardiol Img. 2010;3(7):691–8.

    Article  Google Scholar 

  58. Tota-Maharaj R, Blaha MJ, Rivera JJ, Henry TS, Choi E-K, Chang S-A, et al. Differences in coronary plaque composition with aging measured by coronary computed tomography angiography. Int J Cardiol. 2012;158(2):240–5.

    Article  PubMed  Google Scholar 

  59. Tota-Maharaj R, Al-Mallah MH, Nasir K, Qureshi WT, Blumenthal RS, Blaha MJ. Improving the relationship between coronary artery calcium score and coronary plaque burden: addition of regional measures of coronary artery calcium distribution. Atherosclerosis. 2015;238(1):126–31. Demonstrated that a diffuse CAC pattern and increased number of vessels with CAC are associated with greater total plaque burden, forming the conceptual basis for considering regional CAC measures in improving predictive value of the CAC score.

    Article  CAS  PubMed  Google Scholar 

  60. Bittencourt MS, Hulten E, Ghoshhajra B, O’Leary D, Christman MP, Montana P, et al. Prognostic value of nonobstructive and obstructive coronary artery disease detected by coronary computed tomography angiography to identify cardiovascular events. Circ Cardiovasc Imaging. 2014;7(2):282–91. Demonstrated that extent of plaque, but not local obstruction, best predicts CVD and mortality risk.

    Article  PubMed  Google Scholar 

  61. Mancini GJ, Hartigan PM, Shaw LJ, Berman DS, Hayes SW, Bates ER, et al. Predicting outcome in the COURAGE trial (Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation): coronary anatomy versus ischemia. J Am Coll Cardiol Intv. 2014;7(2):195–201.

    Article  Google Scholar 

  62. Min JK, Dunning A, Lin FY, Achenbach S, Al-Mallah M, Budoff MJ, et al. Age-and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings: results from the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) of 23,854 patients without known coronary artery disease. J Am Coll Cardiol. 2011;58(8):849–60.

    Article  PubMed  Google Scholar 

  63. Tota-Maharaj R, Joshi PH, Budoff MJ, Whelton S, Zeb I, Rumberger J, et al. Usefulness of regional distribution of coronary artery calcium to improve the prediction of all-cause mortality. Am J Cardiol. 2015;115(9):1229–34. Demonstrated that diffuse CAC, increased number of vessels with CAC, and left main coronary involvement are incremental associated with all-cause mortality beyond the traditional Agatston CAC score.

    Article  CAS  PubMed  Google Scholar 

  64. Brown ER, Kronmal RA, Bluemke DA, Guerci AD, Carr JJ, Goldin J, et al. Coronary calcium coverage score: determination, correlates, and predictive accuracy in the multi-ethnic study of atherosclerosis 1. Radiology. 2008;247(3):669–75.

    Article  PubMed  Google Scholar 

  65. Gondrie MJ, van der Graaf Y, Jacobs PC, Oen AL, Willem PTM, Group PS. The association of incidentally detected heart valve calcification with future cardiovascular events. Eur Radiol. 2011;21(5):963–73.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med. 2013;368(21):2004–13.

    Article  CAS  PubMed  Google Scholar 

  67. Sutton-Tyrrell K, Kuller LH, Edmundowicz D, Feldman A, Holubkov R, Givens L, et al. Usefulness of electron beam tomography to detect progression of coronary and aortic calcium in middle-aged women. Am J Cardiol. 2001;87(5):560–4.

    Article  CAS  PubMed  Google Scholar 

  68. Allison MA, Criqui MH, Wright CM. Patterns and risk factors for systemic calcified atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(2):331–6.

    Article  CAS  PubMed  Google Scholar 

  69. Jacobs PC, Gondrie MJ, Mali WP, Oen AL, Prokop M, Grobbee DE, et al. Unrequested information from routine diagnostic chest CT predicts future cardiovascular events. Eur Radiol. 2011;21(8):1577–85.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Blaha.

Ethics declarations

Conflict of Interest

Sina Kianoush, Mahmoud Al Rifai, Miguel Cainzos-Achirica, Priya Umapathi, Garth Graham, Roger S. Blumenthal, and Khurram Nasir declare that they have no conflict of interest.

Michael J. Blaha declares grants from NIH/NHLBI, American Heart Association, Aetna Foundation, grants and personal fees from the FDA, and personal fees for Advisory Board work with Pfizer, Novartis, Aralez Pharmaceuticals, Luitpold Pharmaceuticals, and ISIS Pharmaceuticals.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Coronary Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kianoush, S., Rifai, M.A., Cainzos-Achirica, M. et al. An Update on the Utility of Coronary Artery Calcium Scoring for Coronary Heart Disease and Cardiovascular Disease Risk Prediction. Curr Atheroscler Rep 18, 13 (2016). https://doi.org/10.1007/s11883-016-0565-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-016-0565-6

Keywords

Navigation