Skip to main content

Advertisement

Log in

Genetics and Personalized Medicine—a Role in Statin Therapy?

  • Statin Drugs (MB Clearfield, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Pharmacogenetics uses the genetic variation in metabolic pathways to identify groups of patients who may respond differently in terms of therapeutic and adverse effects. Much clinical interest lies in drug metabolism and the opportunity to improve prescribing efficacy and safety. Owing to widespread use and increasing concern regarding side effects, statins are of significant interest in this area. Among other benefits, statins have been shown to improve lipid profiles and reduce coronary heart disease event rates in many populations. However, variability in drug response exists, and genetic variability may be a contributing factor. Our primary goal is to feature the most important genes involved in lipid metabolism, clinical outcomes, and statin-induced side effects, highlighting genome-wide association studies and the candidate gene approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Superko HR, King III S. Lipid management to reduce cardiovascular risk: a new strategy is required. Circulation. 2008;117(4):560–8.

    Article  PubMed  Google Scholar 

  2. Ference BA, Yoo W, Flack JM, et al. A common KIF6 polymorphism increases vulnerability to low-density lipoprotein cholesterol: two meta-analyses and a meta-regression analysis. PLoS One. 2011;6(12):e28834.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. •• Superko HR, Momary KM, Li Y. Statins personalized. Med Clin N Am. 2012;96(1):123–39. This article provides a good review of candidate genes and GWAS and provides information on the genetic contributors to blood lipid levels, statin response, and statin-associated clinical events.

    Article  CAS  PubMed  Google Scholar 

  4. Mangravite LM, Thorn CF, Krauss RM. Clinical implications of pharmacogenomics of statin treatment. Pharmacogenomics J. 2006;6:360–74.

    Article  CAS  PubMed  Google Scholar 

  5. Simon JA, Lin F, Hulley SB, et al. Phenotypic predictors of response to simvastatin therapy among African-Americans and Caucasians: the Cholesterol and Pharmacogenetics (CAP) Study. Am J Cardiol. 2006;97:843–50.

    Article  CAS  PubMed  Google Scholar 

  6. Schmitz G, Langmann T. Pharmacogenomics of cholesterol-lowering therapy. Vascul Pharmacol. 2006;44(2):75–89.

    Article  CAS  PubMed  Google Scholar 

  7. • Verschuren JJ, Trompet S, Wessels JA, et al. A systematic review on pharmacogenetics in cardiovascular disease: is it ready for clinical application? Eur Heart J. 2012;33(2):165–75. This article serves as an outline for key genes associated with statin efficacy variability and the risk of myopthy. Furthermore, it addresses other cardiovascular medications and their variable effects based on pharmacogenetics.

    Article  PubMed  Google Scholar 

  8. Iakoubova OA, Sabatine MS, Rowland CM, et al. Polymorphism in KIF6 gene and benefit from statins after acute coronary syndromes: results from the PROVE IT-TIMI 22 study. J Am Coll Cardiol. 2008;51(4):449–55.

    Article  CAS  PubMed  Google Scholar 

  9. Iakoubova OA, Tong CH, Rowland CM, et al. Association of the Trp719Arg polymorphism in kinesin-like protein 6 with myocardial infarction and coronary heart disease in 2 prospective trials: the CARE and WOSCOPS trials. J Am Coll Cardiol. 2008;51(4):435–43.

    Article  CAS  PubMed  Google Scholar 

  10. Assimes TL, Holm H, Kathiresan S, et al. Lack of association between the Trp719Arg polymorphism in kinesin-like protein-6 and coronary artery disease in 19 case–control studies. J Am Coll Cardiol. 2010;56:1152–63.

    Article  Google Scholar 

  11. O’Donnell CJ, Nabel EG. Genomics of cardiovascular disease. N Engl J Med. 2011;365:2098–109.

    Article  PubMed  Google Scholar 

  12. Zhu M, Zhao S. Candidate gene identification approach: progress and challenges. Int J Biol Sci. 2007;3(7):420–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. McPherson R, Pertsemlidis A, Kavaslar N, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:1488–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491–3.

    Article  CAS  PubMed  Google Scholar 

  15. Roberts R, Stewart AF. Genes and coronary artery disease: where are we? J Am Coll Cardiol. 2012;60(18):1715–21.

    Article  CAS  PubMed  Google Scholar 

  16. Thompson JF, Hyde CL, Wood LS, et al. Comprehensive whole-genome and candidate gene analysis for response to statin therapy in the treating to new targets (TNT) cohort. Circ Cardiovasc Genet. 2009;2:173–81.

    Article  CAS  PubMed  Google Scholar 

  17. Link E, Parish S, Armitage J, et al. SLCO1B1 variants and statin-induced myopathy – a genomewide study. N Engl J Med. 2008;359(8):789–99.

    Article  CAS  PubMed  Google Scholar 

  18. Barber MJ, Mangravite LM, Hyde CL, et al. Genome-wide association of lipid-lowering response to statins in combined study populations. PLoS One. 2010;5(3):e9763.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Kuusi T, Nieminen MS, Ehnholm C, et al. Apoprotein E polymorphism and coronary artery disease. Increased prevalence of apolipoprotein E-4 in angiographically verified coronary patients. Arteriosclerosis. 1989;9(2):237–41.

    Article  CAS  PubMed  Google Scholar 

  20. Davignon J, Gregg RE, Sing CF. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis. 1988;8:1–21.

    Article  CAS  PubMed  Google Scholar 

  21. Kaprio J, Ferrell RE, Kottke BA, et al. Effects of polymorphisms in apolipoproteins E, A-IV, and H on quantitative traits related to risk for cardiovascular disease. Arterioscler Thromb. 1991;11:1330–48.

    Article  CAS  PubMed  Google Scholar 

  22. Mega JL, Morrow DA, Brown A, et al. Identification of genetic variants associated with response to statin therapy. Arterioscler Thromb Vasc Biol. 2009;29(9):1310–5.

    Article  CAS  PubMed  Google Scholar 

  23. Bennet AM, Di Angelantonio E, Ye Z, et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA. 2007;298:1300–11.

    Article  CAS  PubMed  Google Scholar 

  24. Voora D, Shah SH, Reed CR, et al. Pharmacogenetic predictors of statin-mediated low-density lipoprotein cholesterol reduction and dose response. Circ Cardiovasc Genet. 2008;1:100–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Nieminen T, Kahonen M, Viiri LE, et al. Pharmacogenetics of apolipoprotein E gene during lipid-lowering therapy: lipid levels and prevention of coronary heart disease. Pharmacogenomics. 2008;9:1475–86.

    Article  CAS  PubMed  Google Scholar 

  26. Zintzaras E, Kitsios GD, Triposkiadis F, et al. APOE gene polymorphisms and response to statin therapy. Pharmacogenomics J. 2009;9:248–57.

    Article  CAS  PubMed  Google Scholar 

  27. Chasman DI, Posada D, Subrahmanyan L, et al. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA. 2004;291(23):2821–7.

    Article  CAS  PubMed  Google Scholar 

  28. Thompson JF, Man M, Johnson KJ, et al. An association study of 43SNPs in16 candidate genes with atorvastatin response. Pharmacogenomics J. 2005;5(6):352–8.

    Article  CAS  PubMed  Google Scholar 

  29. Singer JB, Holdaas H, Jardine AG, et al. Genetic analysis of fluvastatin response and dyslipidemia in renal transplant patients. J Lipid Res. 2001;48(9):2072–8.

    Article  Google Scholar 

  30. Polisecki E, Muallem H, Maeda N, et al. Genetic variation at the LDL receptor and HMG-CoA reductase gene loci, lipid levels, statin response, and cardiovascular disease incidence in PROSPER. Atherosclerosis. 2008;200:109–14.

    Article  CAS  PubMed  Google Scholar 

  31. Tirona RG, Leake BF, Merino G, et al. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem. 2001;276(38):35669–75.

    Article  CAS  PubMed  Google Scholar 

  32. Pasanen MK, Fredrikson H, Neuvonen PJ, et al. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2007;82(6):726–33.

    Article  CAS  PubMed  Google Scholar 

  33. Pasanen MK, Neuvonen M, Neuvonen PJ, et al. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics. 2006;16(12):873–9.

    Article  CAS  PubMed  Google Scholar 

  34. Niemi M, Pasanen MK, Neuvonen PJ. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin Pharmacol Ther. 2006;80(4):356–66.

    Article  CAS  PubMed  Google Scholar 

  35. Brown MS, Goldstein JL. Expression of the familial hypercholesterolemia gene in heterozygotes: mechanism for a dominant disorder in man. Science. 1974;185:61–3.

    Article  CAS  PubMed  Google Scholar 

  36. Burnett JR, Hooper AJ. Common and rare gene variants affecting plasma LDL cholesterol. Clin Biochem Rev. 2008;29(1):11–26.

    PubMed Central  PubMed  Google Scholar 

  37. Goldstein JL, Hobbs HH, Brown MS. Familial hypercholesterolemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler K, Vogelstein B, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. p. 2863–913.

    Google Scholar 

  38. Linsel-Nitschke P, Götz A, Erdmann J, et al. Lifelong reduction of LDL-cholesterol related to a common variant in the LDL-receptor gene decreases the risk of coronary artery disease - a Mendelian randomisation study. PLoS One. 2008;3(8):e2986.

    Article  PubMed Central  PubMed  Google Scholar 

  39. • Li Y, Iakoubova OA, Shiffman D. KIF6 polymorphism as a predictor of risk of coronary events and of clinical event reduction by statin therapy. Am J Cardiol. 2010;106(7):994–8. Carriers of KIF6 were noted to have an increased risk of CHD compared with noncarriers. This article describes the studies involved in the initial conclusion and describes the potential clinical value of obtaining KIF6 genotype information.

    Article  CAS  PubMed  Google Scholar 

  40. Iakoubova OA, Robertson M, Tong CH, et al. KIF6 Trp719Arg polymorphism and the effect of statin therapy in elderly patients: results from the PROSPER study. Eur J Cardiovasc Prev Rehabil. 2010;17(4):455–61.

    Article  PubMed  Google Scholar 

  41. Hopewell JC, Parish S, Clarke R, et al. No impact of KIF6 genotype on vascular risk and statin response among 18,348 randomized patients in the heart protection study. J Am Coll Cardiol. 2011;57(20):2000–7.

    Article  CAS  PubMed  Google Scholar 

  42. Ridker PM, Macfadyen JG, Glynn RJ, et al. Kinesin-like protein 6 (KIF6) polymorphism and the efficacy of rosuvastatin in primary prevention. Circ Cardiovasc Genet. 2011;4(3):312–7.

    Article  CAS  PubMed  Google Scholar 

  43. Topol E, Damani S. The KIF6 collapse. J Am Coll Cardiol. 2010;56(19):1564–6.

    Article  PubMed  Google Scholar 

  44. Ordovas JM, Cupples LA, Corella D, et al. Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: the Framingham study. Arterioscler Thromb Vasc Biol. 2000;20:1323–9.

    Article  CAS  PubMed  Google Scholar 

  45. Freeman DJ, Packard CJ, Shepherd J, et al. Polymorphisms in the gene coding for cholesteryl ester transfer protein are related to plasma high-density lipoprotein cholesterol and transfer protein activity. Clin Sci. 1990;79:575–81.

    CAS  PubMed  Google Scholar 

  46. Hannuksela ML, Liinamaa MJ, Kesäniemi YA, et al. Relation of polymorphisms in the cholesteryl ester transfer protein gene to transfer protein activity and plasma lipoprotein levels in alcohol drinkers. Atherosclerosis. 1994;110:35–44.

    Article  CAS  PubMed  Google Scholar 

  47. Kondo I, Berg K, Drayna D, Lawn R. DNA polymorphism at the locus for human cholesteryl ester transfer protein (CETP) is associated with high density lipoprotein cholesterol and apolipoprotein levels. Clin Genet. 1989;35:49–56.

    Article  CAS  PubMed  Google Scholar 

  48. Toth PP. High-density lipoprotein and cardiovascular risk. Circulation. 2004;109:1809–12.

    Article  PubMed  Google Scholar 

  49. Kuivenhoven JA, de Knijff P, Boer JM, et al. Heterogeneity at the CETP gene locus. Influence on plasma CETP concentrations and HDL cholesterol levels. Arterioscler Thromb Vasc Biol. 1997;17(3):560–8.

    Article  CAS  PubMed  Google Scholar 

  50. Kuivenhoven JA, Jukema JW, Zwinderman AH, et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. The Regression Growth Evaluation Statin Study Group. N Engl J Med. 1998;338:86–93.

    Article  CAS  PubMed  Google Scholar 

  51. Regieli JJ, Jukema JW, Grobbee DE, et al. CETP genotype predicts increased mortality in statin-treated men with proven cardiovascular disease: an adverse pharmacogenetic interaction. Eur Heart J. 2008;29:2792–9.

    Article  CAS  PubMed  Google Scholar 

  52. Boekholdt SM, Sacks FM, Jukema JW, et al. Cholesteryl ester transfer protein TaqIB variant, high-density lipoprotein cholesterol levels, cardiovascular risk, and efficacy of pravastatin treatment: individual patient meta-analysis of 13,677 subjects. Circulation. 2005;111:278–87.

    Article  CAS  PubMed  Google Scholar 

  53. Kakko S, Tamminen M, Paivansalo M, et al. Variation at the cholesteryl ester transfer protein gene in relation to plasma high density lipoproteins cholesterol levels and carotid intima-media thickness. Eur J Clin Investig. 2001;31:593–602.

    Article  CAS  Google Scholar 

  54. Armitage J. The safety of statins in clinical practice. Lancet. 2007;370:1781–90.

    Article  CAS  PubMed  Google Scholar 

  55. McClure DL, Valuck RJ, Glanz M, et al. Statin and statin-fibrate use was significantly associated with increased myositis risk in a managed care population. J Clin Epidemiol. 2007;60:812–8.

    Article  PubMed  Google Scholar 

  56. Jacobson TA. Statin safety: lessons from new drug applications for marketed statins. Am J Cardiol. 2006;97:44C–51.

    Article  CAS  PubMed  Google Scholar 

  57. Voora D, Shah SH, Spasojevic I, et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J Am Coll Cardiol. 2009;54(17):1609–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Gotto AM. Statins, cardiovascular disease, and drug safety. Am J Cardiol. 2006;97:S3–5.

    Article  Google Scholar 

  59. Niemi M. Transporter pharmacogenetics and statin toxicity. Clin Pharmacol Ther. 2010;87(1):130–3.

    Article  CAS  PubMed  Google Scholar 

  60. Bellosta S, Paoletti R, Corsini A. Safety of statins: focus on clinical pharmacokinetics and drug interactions. Circulation. 2004;109(23 Suppl 1):III50–7.

    PubMed  Google Scholar 

  61. Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol. 1998;38:389–430.

    Article  CAS  PubMed  Google Scholar 

  62. Fallah A, Deep M, Smallwood D, et al. Life-threatening rhabdomyolysis following the interaction of two commonly prescribed medications. Australas Med J. 2013;6(3):112–4.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Zanger UM, Turpeinen M, Klein K, et al. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem. 2008;392:1093–108.

    Article  CAS  PubMed  Google Scholar 

  64. Scranton RE, Cantillon C, Gagnon D, et al. Occurrences of rhabdomyolysis or myositis among statin users in a Veteran Affairs population (abstract from presentation at the AHA Council on Epidemiology and Prevention meeting in March 2004, San Francisco). Circulation. 2004;109:154.

    Article  Google Scholar 

  65. Golomb BA, Evans MA. Statin adverse effects: a review of the literature and evidence for a mitochondrial mechanism. Am J Cardiovasc Drugs. 2008;8(6):373–418.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Jacobson TA. Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am J Cardiol. 2004;94:1140–6.

    Article  CAS  PubMed  Google Scholar 

  67. Wang D, Guo Y, Wrighton SA, et al. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011;1:274–86.

    Article  Google Scholar 

  68. Wang B, Yang LP, Zhang XZ, et al. New insight into the structural characteristics and functional relevance of humane cytochrome P450 2D6 enzyme. Drug Metab Rev. 2009;41(4):573–643.

    Article  CAS  PubMed  Google Scholar 

  69. Frudakis TN, Thomas MJ, Ginjupalli SN, et al. CYP2D6*4 polymorphism is associated with statin-induced muscle effects. Pharmacogenet Genomics. 2007;17(9):695–707.

    Article  CAS  PubMed  Google Scholar 

  70. Mulder AB, van Lijf HJ, Bon MAM, et al. Association of polymorphism in the cytochrome CYP2D6 and the efficacy and tolerability of simvastatin. Clin Pharmacol Ther. 2001;70:546–51.

    Article  CAS  PubMed  Google Scholar 

  71. Zuccaro P, Mombelli G, Calabresi L, et al. Tolerability of statins is not linked to CYP450 polymorphisms, but reduced CYP2D6 metabolism improves cholesteraemic response to simvastatin and fluvastatin. Pharmacol Res. 2007;55(4):310–7.

    Article  CAS  PubMed  Google Scholar 

  72. • Wilke RA, Ramsey LB, Johnson SG, et al. The Clinical Pharmacogenomics Implementation Consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther. 2012;92:112–7. Genetic variation influences the response of an individual to drug treatments. This article first provides a focused review on the SLCO1B1 variant, and subsequently provides an interpretive guidance on the use of simvastatin in patients with the aforementioned phenotype.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Krauss RM, Mangravite LM, Smith JD, et al. Variation in the 3-hydroxyl-3-methylglutaryl coenzyme a reductase gene is associated with racial differences in low-density lipoprotein cholesterol response to simvastatin treatment. Circulation. 2008;117(12):1537–44.

    Article  CAS  PubMed  Google Scholar 

  74. Gerdes LU, Gerdes C, Kervinen K, et al. The apolipoprotein ε4 allele determines prognosis and the effect on prognosis of simvastatin in survivors of myocardial infarction: a substudy of the Scandinavian simvastatin survival study. Circulation. 2000;101(12):1366–71.

    Article  CAS  PubMed  Google Scholar 

  75. Maitland-van der Zee AH, Jukema JW, Zwinderman AH, et al. Apolipoprotein-E polymorphism and response to pravastatin in men with coronary artery disease (REGRESS). Acta Cardiol. 2006;61(3):327–31.

    Article  PubMed  Google Scholar 

  76. Maitland-van der Zee AH, Stricker BH, Klungel OH, et al. The effectiveness of hydroxymethylglutaryl coenzyme A reductase inhibitors (statins) in the elderly is not influenced by apolipoprotein E genotype. Pharmacogenetics. 2002;12(8):647–53.

    Article  CAS  PubMed  Google Scholar 

  77. Romaine SP, Bailey KM, Hall AS, et al. The influence of SLCO1B1 (OATP1B1) gene polymorphisms on response to statin therapy. Pharmacogenomics J. 2010;10(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  78. Brunham LR, Lansberg PJ, Zhang L, et al. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. Pharmacogenomics J. 2012;12(3):233–7.

    Article  CAS  PubMed  Google Scholar 

  79. Peters BJ, Rodin AS, Klungel OH, et al. Pharmacogenetic interactions between ABCB1 and SLCO1B1 tagging SNPs and the effectiveness of statins in the prevention of myocardial infarction. Pharmacogenomics. 2010;11(8):1065–76.

    Article  CAS  PubMed  Google Scholar 

  80. Carlquist JF, Muhlestein JB, Horne BD, et al. The cholesteryl ester transfer protein Taq1B gene polymorphism predicts clinical benefit of statin therapy in patients with significant coronary artery disease. Am Heart J. 2003;146(6):1007–14.

    Article  CAS  PubMed  Google Scholar 

  81. Freeman DJ, Samani NJ, Wilson V, et al. A polymorphism of the cholesteryl ester transfer protein gene predicts cardiovascular events in non-smokers in the West of Scotland Coronary Prevention Study. Eur Heart J. 2003;24(20):1833–42.

    Article  CAS  PubMed  Google Scholar 

  82. Postmus I, Verschuren JW, de Craen AJM, et al. Pharmacogenetics of statins – achievements, whole-genome analyses, and future perspective. Pharmacogenetics. 2012;13(7):831–40.

    CAS  Google Scholar 

  83. Verschuren JJW, Trompet S, Wessels JAM. A systematic review on pharmacogenetics in cardiovascular disease: is it ready for clinical application? Eur Heart J. 2012;3:165–75.

    Article  Google Scholar 

  84. Linde R, Peng L, Desai M, et al. The role of vitamin D and SLCO1B1*5 gene polymorphism in statin-associated myalgias. Dermatoendocrinol. 2010;2(2):77–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Donnelly LA, Doney AS, Tavendale R, et al. Common nonsynonymous substitutions in SLCO1B1 predispose to statin intolerance in routinely treated individuals with type 2 diabetes: a go-DARTS study. Clin Pharmacol Ther. 2011;89(2):210–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Marciante KD, Durda JP, Heckbert SR, et al. Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharmacogenet Genomics. 2011;21(5):280–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of Interest

Jaideep Patel, Thura Abd, Roger S. Blumenthal, and Khurram Nasir declare that they have no conflict of interest.

H. Robert Superko is employed as Chief Medical Officer with Celera and has stock/stock options (retirement plan) with Celera.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurram Nasir.

Additional information

This article is part of the Topical Collection on Statin Drugs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, J., Abd, T., Blumenthal, R.S. et al. Genetics and Personalized Medicine—a Role in Statin Therapy?. Curr Atheroscler Rep 16, 384 (2014). https://doi.org/10.1007/s11883-013-0384-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-013-0384-y

Keywords

Navigation