Skip to main content

Advertisement

Log in

Epigenetic Regulation of Vascular Smooth Muscle Cell Function in Atherosclerosis

  • Genetics (AJ Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    Article  PubMed  CAS  Google Scholar 

  2. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.

    Article  PubMed  CAS  Google Scholar 

  3. Tan M, Luo H, Lee S, Jin F, Yang JS, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011;146(6):1016–28.

    Article  PubMed  CAS  Google Scholar 

  4. Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer. 2011;11(10):726–34.

    Article  PubMed  CAS  Google Scholar 

  5. Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6(8):597–610.

    Article  PubMed  CAS  Google Scholar 

  6. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76.

    Article  PubMed  CAS  Google Scholar 

  7. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009;41(12):1350–3.

    Article  PubMed  CAS  Google Scholar 

  8. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

    Article  PubMed  CAS  Google Scholar 

  9. Ito S, Shen L, Dai Q, Wu SC, Collins LB, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333(6047):1300–3.

    Article  PubMed  CAS  Google Scholar 

  10. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.

    Article  PubMed  CAS  Google Scholar 

  11. Jeppesen P, Turner BM. The inactive x chromosome in female mammals is distinguished by a lack of histone h4 acetylation, a cytogenetic marker for gene expression. Cell. 1993;74(2):281–9.

    Article  PubMed  CAS  Google Scholar 

  12. Braunstein M, Rose AB, Holmes SG, Allis CD, Broach JR. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 1993;7(4):592–604.

    Article  PubMed  CAS  Google Scholar 

  13. Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone h3 lysine 9 creates a binding site for hp1 proteins. Nature. 2001;410(6824):116–20.

    Article  PubMed  CAS  Google Scholar 

  14. Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007;128(4):707–19.

    Article  PubMed  CAS  Google Scholar 

  15. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  PubMed  CAS  Google Scholar 

  16. Euskirchen G, Auerbach RK, Snyder M. SWI/SNF chromatin-remodeling factors: multiscale analyses and diverse functions. J Biol Chem. 2012;287(37):30897–905.

    Article  PubMed  CAS  Google Scholar 

  17. Cheung P, Lau P. Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol. 2005;19(3):563–73.

    Article  PubMed  CAS  Google Scholar 

  18. Lorenzen JM, Martino F, Thum T. Epigenetic modifications in cardiovascular disease. Basic Res Cardiol. 2012;107(2):245.

    Article  PubMed  Google Scholar 

  19. Alkemade FE, van Vliet P, Henneman P, van Dijk KW, Hierck BP, et al. Prenatal exposure to apoE deficiency and postnatal hypercholesterolemia are associated with altered cell-specific lysine methyltransferase and histone methylation patterns in the vasculature. Am J Pathol. 2010;176(2):542–8.

    Article  PubMed  CAS  Google Scholar 

  20. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.

    Article  PubMed  CAS  Google Scholar 

  21. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32(9):2045–51.

    Article  PubMed  CAS  Google Scholar 

  22. Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28(5):812–9.

    Article  PubMed  CAS  Google Scholar 

  23. Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res. 2012;95(2):194–204.

    Article  PubMed  CAS  Google Scholar 

  24. •• Alexander MR, Owens GK. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol. 2012;74:13–40. This review provides an excellent and detailed description of epigenetic mechanisms in smooth muscle cell differentiation.

    Article  PubMed  CAS  Google Scholar 

  25. Spin JM, Maegdefessel L, Tsao PS. Vascular smooth muscle cell phenotypic plasticity: focus on chromatin remodelling. Cardiovasc Res. 2012;95(2):147–55.

    Article  PubMed  CAS  Google Scholar 

  26. Mack CP, Thompson MM, Lawrenz-Smith S, Owens GK. Smooth muscle alpha-actin CArG elements coordinate formation of a smooth muscle cell-selective, serum response factor-containing activation complex. Circ Res. 2000;86(2):221–32.

    Article  PubMed  CAS  Google Scholar 

  27. McDonald OG, Wamhoff BR, Hoofnagle MH, Owens GK. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest. 2006;116(1):36–48.

    Article  PubMed  CAS  Google Scholar 

  28. Manabe I, Owens GK. Recruitment of serum response factor and hyperacetylation of histones at smooth muscle-specific regulatory regions during differentiation of a novel P19-derived in vitro smooth muscle differentiation system. Circ Res. 2001;88(11):1127–34.

    Article  PubMed  CAS  Google Scholar 

  29. Cao D, Wang Z, Zhang CL, Oh J, Xing W, et al. Modulation of smooth muscle gene expression by association of histone acetyltransferases and deacetylases with myocardin. Mol Cell Biol. 2005;25(1):364–76.

    Article  PubMed  CAS  Google Scholar 

  30. Qiu P, Li L. Histone acetylation and recruitment of serum responsive factor and CREB-binding protein onto SM22 promoter during SM22 gene expression. Circ Res. 2002;90(8):858–65.

    Article  PubMed  CAS  Google Scholar 

  31. Spin JM, Quertermous T, Tsao PS. Chromatin remodeling pathways in smooth muscle cell differentiation, and evidence for an integral role for p300. PLoS One. 2010;5(12):e14301.

    Article  PubMed  CAS  Google Scholar 

  32. Yoshida T, Gan Q, Shang Y, Owens GK. Platelet-derived growth factor-BB represses smooth muscle cell marker genes via changes in binding of MKL factors and histone deacetylases to their promoters. Am J Physiol Cell Physiol. 2007;292(2):C886–95.

    Article  PubMed  CAS  Google Scholar 

  33. Yoshida T, Gan Q, Owens GK. Kruppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am J Physiol Cell Physiol. 2008;295(5):C1175–82.

    Article  PubMed  CAS  Google Scholar 

  34. Salmon M, Gomez D, Greene E, Shankman L, Owens GK. Cooperative binding of KLF4, pELK-1, and HDAC2 to a G/C repressor element in the SM22α promoter mediates transcriptional silencing during SMC phenotypic switching in vivo. Circ Res. 2012;111(6):685–96.

    Article  PubMed  CAS  Google Scholar 

  35. Gan Q, Thiébaud P, Thézé N, Jin L, Xu G, et al. WD repeat-containing protein 5, a ubiquitously expressed histone methyltransferase adaptor protein, regulates smooth muscle cell-selective gene activation through interaction with pituitary homeobox 2. J Biol Chem. 2011;286(24):21853–64.

    Article  PubMed  CAS  Google Scholar 

  36. Lockman K, Taylor JM, Mack CP. The histone demethylase, Jmjd1a, interacts with the myocardin factors to regulate SMC differentiation marker gene expression. Circ Res. 2007;101(12):e115–23.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang QJ, Goddard M, Shanahan C, Shapiro L, Bennett M. Differential gene expression in vascular smooth muscle cells in primary atherosclerosis and in stent stenosis in humans. Arterioscler Thromb Vasc Biol. 2002;22(12):2030–6.

    Article  PubMed  CAS  Google Scholar 

  38. Zhou J, Zhang M, Fang H, El-Mounayri O, Rodenberg JM, et al. The SWI/SNF chromatin remodeling complex regulates myocardin-induced smooth muscle-specific gene expression. Arterioscler Thromb Vasc Biol. 2009;29(6):921–8.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang M, Chen M, Kim JR, Zhou J, Jones RE, et al. SWI/SNF complexes containing Brahma or Brahma-related gene 1 play distinct roles in smooth muscle development. Mol Cell Biol. 2011;31(13):2618–31.

    Article  PubMed  CAS  Google Scholar 

  40. Hiltunen MO, Turunen MP, Häkkinen TP, Rutanen J, Hedman M, et al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med. 2002;7(1):5–11.

    Article  PubMed  Google Scholar 

  41. Laukkanen MO, Mannermaa S, Hiltunen MO, Aittomaki S, Airenne K, et al. Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arterioscler Thromb Vasc Biol. 1999;19:2171–8.

    Article  PubMed  CAS  Google Scholar 

  42. Zhang H, Gu S, Al-Sabeq B, Wang S, He J, et al. Origin-specific epigenetic program correlates with vascular bed-specific differences in Rgs5 expression. FASEB J. 2012;26(1):181–91.

    Article  PubMed  CAS  Google Scholar 

  43. Ying AK, Hassanain HH, Roos CM, Smiraglia DJ, Issa JJ, et al. Methylation of the estrogen receptor-alpha gene promoter is selectively increased in proliferating human aortic smooth muscle cells. Cardiovasc Res. 2000;46(1):172–9.

    Article  PubMed  CAS  Google Scholar 

  44. Dzau VJ, Braun-Dullaeus RC, Sedding DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med. 2002;8(11):1249–56.

    Article  PubMed  CAS  Google Scholar 

  45. Zhou B, Margariti A, Zeng L, Xu Q. Role of histone deacetylases in vascular cell homeostasis and arteriosclerosis. Cardiovasc Res. 2011;90(3):413–20.

    Article  PubMed  CAS  Google Scholar 

  46. Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007;26(37):5541–52.

    Article  PubMed  CAS  Google Scholar 

  47. Sambucetti LC, Fischer DD, Zabludoff S, Kwon PO, Chamberlin H, et al. Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J Biol Chem. 1999;274(49):34940–7.

    Article  PubMed  CAS  Google Scholar 

  48. Findeisen HM, Gizard F, Zhao Y, Qing H, Heywood EB, et al. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition. Arterioscler Thromb Vasc Biol. 2011;31(4):851–60.

    Article  PubMed  CAS  Google Scholar 

  49. Okamoto H, Fujioka Y, Takahashi A, Takahashi T, Taniguchi T, et al. Trichostatin A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21(WAF1). J Atheroscler Thromb. 2006;13(4):183–91.

    Article  PubMed  CAS  Google Scholar 

  50. Kee HJ, Kwon JS, Shin S, Ahn Y, Jeong MH, et al. Trichostatin A prevents neointimal hyperplasia via activation of Krüppel like factor 4. Vascul Pharmacol. 2011;55(5–6):127–34.

    Article  PubMed  CAS  Google Scholar 

  51. Mathew OP, Ranganna K, Yatsu FM. Butyrate, an HDAC inhibitor, stimulates interplay between different posttranslational modifications of histone H3 and differently alters G1-specific cell cycle proteins in vascular smooth muscle cells. Biomed Pharmacother. 2010;64(10):733–40.

    Article  PubMed  CAS  Google Scholar 

  52. Zhou B, Margariti A, Zeng L, Habi O, Xiao Q, et al. Splicing of histone deacetylase 7 modulates smooth muscle cell proliferation and neointima formation through nuclear β-catenin translocation. Arterioscler Thromb Vasc Biol. 2011;31(11):2676–84.

    Article  PubMed  CAS  Google Scholar 

  53. Li L, Zhang HN, Chen HZ, Gao P, Zhu LH, et al. SIRT1 acts as a modulator of neointima formation following vascular injury in mice. Circ Res. 2011;108(10):1180–9.

    Article  PubMed  CAS  Google Scholar 

  54. Yan ZQ, Yao QP, Zhang ML, Qi YX, Guo ZY, et al. Histone deacetylases modulate vascular smooth muscle cell migration induced by cyclic mechanical strain. J Biomech. 2009;42(7):945–8.

    Article  PubMed  Google Scholar 

  55. Azahri NS, Di Bartolo BA, Khachigian LM, Kavurma MM. Sp1, acetylated histone-3 and p300 regulate TRAIL transcription: Mechanisms of PDGF-BB-mediated VSMC proliferation and migration. J Cell Biochem. 2012;113(8):2597–606.

    Article  PubMed  CAS  Google Scholar 

  56. Orr AW, Hastings NE, Blackman BR, Wamhoff BR. Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res. 2010;47(2):168–80.

    Article  PubMed  Google Scholar 

  57. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994;94(6):2493–503.

    Article  PubMed  CAS  Google Scholar 

  58. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002;90(3):251–62.

    PubMed  CAS  Google Scholar 

  59. Pons D, de Vries FR, van den Elsen PJ, Heijmans BT, Quax PH, et al. Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease. Eur Heart J. 2009;30(3):266–77.

    Article  PubMed  CAS  Google Scholar 

  60. Chernov AV, Strongin AY. Epigenetic regulation of matrix metalloproteinases and their collagen substrates in cancer. Biomol Concepts. 2011;2(3):135–47.

    Article  PubMed  Google Scholar 

  61. Vinh A, Gaspari TA, Liu HB, Dousha LF, Widdop RE, et al. A novel histone deacetylase inhibitor reduces abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. J Vasc Res. 2008;45(2):143–52.

    Article  PubMed  CAS  Google Scholar 

  62. Gomez D, Coyet A, Ollivier V, Jeunemaitre X, Jondeau G, Michel JB, et al. Epigenetic control of vascular smooth muscle cells in Marfan and non-Marfan thoracic aortic aneurysms. Cardiovasc Res. 2011;89(2):446–56.

    Article  PubMed  CAS  Google Scholar 

  63. Chen KC, Wang YS, Hu CY, Chang WC, Liao YC, et al. OxLDL up-regulates microRNA-29b, leading to epigenetic modifications of MMP-2/MMP-9 genes: a novel mechanism for cardiovascular diseases. FASEB J. 2011;25(5):1718–28.

    Article  PubMed  CAS  Google Scholar 

  64. Chen KC, Liao YC, Hsieh IC, Wang YS, Hu CY, et al. OxLDL causes both epigenetic modification and signaling regulation on the microRNA-29b gene: novel mechanisms for cardiovascular diseases. J Mol Cell Cardiol. 2012;52(3):587–95.

    Article  PubMed  CAS  Google Scholar 

  65. Bennett MR. Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovasc Res. 1999;41(2):361–8.

    Article  PubMed  CAS  Google Scholar 

  66. Kavurma MM, Figg N, Bennett MR, Mercer J, Khachigian LM, et al. Oxidative stress regulates IGF1R expression in vascular smooth-muscle cells via p53 and HDAC recruitment. Biochem J. 2007;407(1):79–87.

    Article  PubMed  CAS  Google Scholar 

  67. Shao JS, Cai J, Towler DA. Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arterioscler Thromb Vasc Biol. 2006;26(7):1423–30.

    Article  PubMed  CAS  Google Scholar 

  68. Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res. 2011;109(6):697–711.

    Article  PubMed  CAS  Google Scholar 

  69. Iyemere VP, Proudfoot D, Weissberg PL, Shanahan CM. Vascular smooth muscle cell phenotypic plasticity and the regulation of vascular calcification. J Intern Med. 2006;260(3):192–210.

    Article  PubMed  CAS  Google Scholar 

  70. Takemura A, Iijima K, Ota H, Son BK, Ito Y, et al. Sirtuin 1 retards hyperphosphatemia-induced calcification of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2011;31(9):2054–62.

    Article  PubMed  CAS  Google Scholar 

  71. Montes de Oca A, Madueño JA, Martinez-Moreno JM, Guerrero F, Muñoz-Castañeda J, et al. High-phosphate-induced calcification is related to SM22α promoter methylation in vascular smooth muscle cells. J Bone Miner Res. 2010;25(9):1996–2005.

    Article  PubMed  CAS  Google Scholar 

  72. Indolfi C, Torella D, Cavuto L, Davalli AM, Coppola C, et al. Effects of balloon injury on neointimal hyperplasia in streptozotocin-induced diabetes and in hyperinsulinemic nondiabetic pancreatic islet-transplanted rats. Circulation. 2001;103(24):2980–6.

    Article  PubMed  CAS  Google Scholar 

  73. Golovchenko I, Goalstone ML, Watson P, Brownlee M, Draznin B. Hyperinsulinemia enhances transcriptional activity of nuclear factor-kappaB induced by angiotensin II, hyperglycemia, and advanced glycosylation end products in vascular smooth muscle cells. Circ Res. 2000;87(9):746–52.

    Article  PubMed  CAS  Google Scholar 

  74. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53.

    Article  PubMed  Google Scholar 

  75. Reddy MA, Natarajan R. Epigenetic mechanisms in diabetic vascular complications. Cardiovasc Res. 2011;90(3):421–9.

    Article  PubMed  CAS  Google Scholar 

  76. Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, et al. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci U S A. 2008;105(26):9047–52.

    Article  PubMed  CAS  Google Scholar 

  77. • Villeneuve LM, Kato M, Reddy MA, Wang M, Lanting L, et al. Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1. Diabetes. 2010;59(11):2904–15. This paper describes an epigenetic inflammatory metabolic memory in smooth muscle cells and the regulation through miRNA.

    Article  PubMed  CAS  Google Scholar 

  78. Reddy MA, Sahar S, Villeneuve LM, Lanting L, Natarajan R. Role of Src tyrosine kinase in the atherogenic effects of the 12/15-lipoxygenase pathway in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2009;29(3):387–93.

    Article  PubMed  CAS  Google Scholar 

  79. Sahar S, Reddy MA, Wong C, Meng L, Wang M, et al. Cooperation of SRC-1 and p300 with NF-kappaB and CREB in angiotensin II-induced IL-6 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2007;27(7):1528–34.

    Article  PubMed  CAS  Google Scholar 

  80. Xu X, Ha CH, Wong C, Wang W, Hausser A, et al. Angiotensin II stimulates protein kinase D-dependent histone deacetylase 5 phosphorylation and nuclear export leading to vascular smooth muscle cell hypertrophy. Arterioscler Thromb Vasc Biol. 2007;27(11):2355–62.

    Article  PubMed  CAS  Google Scholar 

  81. Li H, Li W, Gupta AK, Mohler PJ, Anderson ME, et al. Calmodulin kinase II is required for angiotensin II-mediated vascular smooth muscle hypertrophy. Am J Physiol Heart Circ Physiol. 2010;298(2):H688–98.

    Article  PubMed  CAS  Google Scholar 

  82. Usui T, Okada M, Mizuno W, Oda M, Ide N, et al. HDAC4 mediates development of hypertension via vascular inflammation in spontaneous hypertensive rats. Am J Physiol Heart Circ Physiol. 2012;302(9):H1894–904.

    Article  PubMed  CAS  Google Scholar 

  83. Choi JH, Nam KH, Kim J, Baek MW, Park JE, et al. Trichostatin A exacerbates atherosclerosis in low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2005;25(11):2404–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of Interest

Hannes M. Findeisen reports no conflicts of interest.

Florian K. Kahles reports no conflicts of interest.

Dennis Bruemmer reports no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes M. Findeisen.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Findeisen, H.M., Kahles, F.K. & Bruemmer, D. Epigenetic Regulation of Vascular Smooth Muscle Cell Function in Atherosclerosis. Curr Atheroscler Rep 15, 319 (2013). https://doi.org/10.1007/s11883-013-0319-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-013-0319-7

Keywords

Navigation