Skip to main content

Advertisement

Log in

Novel Mechanisms of Abdominal Aortic Aneurysms

  • Clinical Trials and Their Interpretations (J Plutzky, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Abdominal aortic aneurysms (AAAs) are a common but asymptomatic disease that has high susceptibility to rupture. Current therapeutic options are limited to surgical procedures because no pharmacological approaches have been proven to decrease either expansion or rupture of human AAAs. The current dearth of effective medical treatment is attributed to insufficient understanding of the mechanisms underlying the initiation, propagation and rupture of AAAs. This review will emphasize recent advances in mechanistic studies that may provide insights into potential pharmacological treatments for this disease. While we primarily focus on recent salient findings, we also discuss mechanisms that continue to be controversial depending on models under study. Despite the progress on exploring mechanisms of experimental AAAs, ultimate validation of mechanisms will require completion of prospective double-blinded clinical trials. In addition, we advocate increased emphasis of collaborative studies using animal models and human tissues for determination of mechanisms that explore expansion and rupture of existing AAAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pande RL, Beckman JA. Abdominal aortic aneurysm: populations at risk and how to screen. J Vasc Interv Radiol. 2008;19:S2–8.

    PubMed  Google Scholar 

  2. Golledge J, Muller J, Daugherty A, Norman P. Abdominal aortic aneurysm. Pathogenesis and implications for management. Arterioscler Thromb Vasc Biol. 2006;26:2605–13.

    PubMed  CAS  Google Scholar 

  3. Lederle FA, Johnson GR, Wilson SE. Abdominal aortic aneurysm in women. J Vasc Surg. 2001;34:122–6.

    PubMed  CAS  Google Scholar 

  4. Golledge J, Norman PE. Current status of medical management for abdominal aortic aneurysm. Atherosclerosis. 2011;217:57–63.

    PubMed  CAS  Google Scholar 

  5. Thom T, Haase N, Rosamond W, et al. Heart disease and stroke statistics–2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2006;113:e85–151.

    PubMed  Google Scholar 

  6. Norman PE, Powell JT. Abdominal aortic aneurysm: the prognosis in women is worse than in men. Circulation. 2007;115:2865–9.

    PubMed  CAS  Google Scholar 

  7. Powell JT, Greenhalgh RM. Small abdominal aortic aneurysms. N Engl J Med. 2003;348:1895–901.

    PubMed  Google Scholar 

  8. Golledge J, Tsao PS, Dalman RL, Norman PE. Circulating markers of abdominal aortic aneurysm presence and progression. Circulation. 2008;118:2382–92.

    PubMed  Google Scholar 

  9. Powell JT, Brady AR. Detection, management, and prospects for the medical treatment of small abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2004;24:241–5.

    PubMed  CAS  Google Scholar 

  10. Wissler RW, Strong JP. Risk factors and progression of atherosclerosis in youth. PDAY Research Group. Pathological Determinants of Atherosclerosis in Youth. Am J Pathol. 1998;153:1023–33.

    PubMed  CAS  Google Scholar 

  11. Anidjar S, Salzmann JL, Gentric D, et al. Elastase-induced experimental aneurysms in rats. Circulation. 1990;82:973–81.

    PubMed  CAS  Google Scholar 

  12. Daugherty A, Cassis LA. Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2004;24:429–34.

    PubMed  CAS  Google Scholar 

  13. Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest. 2000;105:1605–12.

    PubMed  CAS  Google Scholar 

  14. Pyo R, Lee JK, Shipley JM, et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest. 2000;105:1641–9.

    PubMed  CAS  Google Scholar 

  15. Longo GM, Xiong W, Greiner TC, et al. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest. 2002;110:625–32.

    PubMed  CAS  Google Scholar 

  16. Daugherty A, Cassis L. Angiotensin II and abdominal aortic aneurysms. Curr Hypertens Rep. 2004;6:442–6.

    PubMed  Google Scholar 

  17. Lu H, Rateri DL, Cassis LA, Daugherty A. The role of the renin-angiotensin system in aortic aneurysmal diseases. Curr Hypertens Rep. 2008;10:99–106.

    PubMed  CAS  Google Scholar 

  18. Daugherty A, Cassis LA, Lu H. Complex pathologies of angiotensin II-induced abdominal aortic aneurysms. J Zhejiang Univ Sci B. 2011;12:624–8.

    PubMed  CAS  Google Scholar 

  19. Lu H, Rateri DL, Bruemmer D et al.: Involvement of the renin-angiotensin system in abdominal and throacic aortic aneurysms. Clin Sci. 2012;123:531–543.

    Google Scholar 

  20. Freestone T, Turner RJ, Higman DJ, et al. Influence of hypercholesterolemia and adventitial inflammation on the development of aortic aneurysm in rabbits. Arterioscler Thromb Vasc Biol. 1997;17:10–7.

    PubMed  CAS  Google Scholar 

  21. Saraff K, Babamusta F, Cassis LA, Daugherty A. Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23:1621–6.

    PubMed  CAS  Google Scholar 

  22. Police SB, Thatcher SE, Charnigo R, et al. Obesity promotes inflammation in periaortic adipose tissue and angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol. 2009;29:1458–64.

    PubMed  CAS  Google Scholar 

  23. Police SB, Putnam K, Thatcher S, et al. Weight loss in obese C57BL/6 mice limits adventitial expansion of established angiotensin II-induced abdominal aortic aneurysms. Am J Physiol Heart Circ Physiol. 2010;298:H1932–8.

    PubMed  CAS  Google Scholar 

  24. Rateri DL, Howatt DA, Moorleghen JJ, et al. Prolonged infusion of angiotensin II in apoE-/- mice promotes macrophage recruitment with continued expansion of abdominal aortic aneurysms. Am J Pathol. 2011;179:1542–8.

    PubMed  CAS  Google Scholar 

  25. Daugherty A, Rateri DL, Charo IF, et al. Angiotensin II infusion promotes ascending aortic aneurysms: attenuation by CCR2 deficiency in apoE-/- mice. Clin Sci (Lond). 2010;118:681–9.

    CAS  Google Scholar 

  26. Ishibashi M, Egashira K, Zhao Q, et al. Bone marrow-derived monocyte chemoattractant protein-1 receptor CCR2 is critical in angiotensin II-induced acceleration of atherosclerosis and aneurysm formation in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol. 2004;24:174–8.

    Google Scholar 

  27. MacTaggart JN, Xiong W, Knispel R, Baxter BT. Deletion of CCR2 but not CCR5 or CXCR3 inhibits aortic aneurysm formation. Surgery. 2007;142:284–8.

    PubMed  Google Scholar 

  28. Owens 3rd AP, Rateri DL, Howatt DA, et al. MyD88 deficiency attenuates angiotensin II-induced abdominal aortic aneurysm formation independent of signaling through toll-like receptors 2 and 4. Arterioscler Thromb Vasc Biol. 2011;31:2813–9.

    PubMed  CAS  Google Scholar 

  29. Findeisen HM, Gizard F, Zhao Y, et al. Telomerase deficiency in bone marrow-derived cells attenuates angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol. 2011;31:253–60.

    PubMed  CAS  Google Scholar 

  30. Yin M, Zhang J, Wang Y, et al. Deficient CD4 + CD25+ T regulatory cell function in patients with abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2010;30:1825–31.

    PubMed  CAS  Google Scholar 

  31. Shimizu K, Shichiri M, Libby P, et al. Th2-predominant inflammation and blockade of IFN-gamma signaling induce aneurysms in allografted aortas. J Clin Invest. 2004;114:300–8.

    PubMed  CAS  Google Scholar 

  32. Uchida HA, Kristo F, Rateri DL, et al. Total lymphocyte deficiency attenuates AngII-induced atherosclerosis in males but not abdominal aortic aneurysms in apoE deficient mice. Atherosclerosis. 2010;211:399–403.

    PubMed  CAS  Google Scholar 

  33. Cohen JR, Keegan L, Sarfati I, et al. Neutrophil chemotaxis and neutrophil elastase in the aortic wall in patients with abdominal aortic aneurysms. J Invest Surg. 1991;4:423–30.

    PubMed  CAS  Google Scholar 

  34. Eliason JL, Hannawa KK, Ailawadi G, et al. Neutrophil depletion inhibits experimental abdominal aortic aneurysm formation. Circulation. 2005;112:232–40.

    PubMed  CAS  Google Scholar 

  35. Hannawa KK, Eliason JL, Woodrum DT, et al. L-selectin-mediated neutrophil recruitment in experimental rodent aneurysm formation. Circulation. 2005;112:241–7.

    PubMed  CAS  Google Scholar 

  36. Tsuruda T, Kato J, Hatakeyama K, et al. Adventitial mast cells contribute to pathogenesis in the progression of abdominal aortic aneurysm. Circ Res. 2008;102:1368–77.

    PubMed  CAS  Google Scholar 

  37. Sun J, Sukhova GK, Yang M, et al. Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J Clin Invest. 2007;117:3359–68.

    PubMed  CAS  Google Scholar 

  38. Swedenborg J, Mayranpaa MI, Kovanen PT. Mast cells: important players in the orchestrated pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2011;31:734–40.

    PubMed  CAS  Google Scholar 

  39. Middleton RK, Lloyd GM, Bown MJ, et al. The pro-inflammatory and chemotactic cytokine microenvironment of the abdominal aortic aneurysm wall: a protein array study. J Vasc Surg. 2007;45:574–80.

    PubMed  Google Scholar 

  40. Juvonen J, Surcel HM, Satta J, et al. Elevated circulating levels of inflammatory cytokines in patients with abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 1997;17:2843–7.

    PubMed  CAS  Google Scholar 

  41. Golledge AL, Walker P, Norman PE, Golledge J. A systematic review of studies examining inflammation associated cytokines in human abdominal aortic aneurysm samples. Dis Markers. 2009;26:181–8.

    PubMed  CAS  Google Scholar 

  42. Satoh H, Nakamura M, Satoh M, et al. Expression and localization of tumour necrosis factor-alpha and its converting enzyme in human abdominal aortic aneurysm. Clin Sci (Lond). 2004;106:301–6.

    CAS  Google Scholar 

  43. Kaneko H, Anzai T, Horiuchi K, et al. Tumor necrosis factor-alpha converting enzyme is a key mediator of abdominal aortic aneurysm development. Athero. 2011;218:470–8.

    CAS  Google Scholar 

  44. Koole D, Hurks R, Schoneveld A et al.: Osteoprotegerin is associated with aneurysm diameter and proteolysis in abdominal aortic aneurysm disease. Arterioscler Thromb Vasc Biol. 2012;32:1497–1504.

    Google Scholar 

  45. Xiong W, MacTaggart J, Knispel R, et al. Blocking TNF-alpha attenuates aneurysm formation in a murine model. J Immunol. 2009;183:2741–6.

    PubMed  CAS  Google Scholar 

  46. Xanthoulea S, Thelen M, Pottgens C, et al. Absence of p55 TNF receptor reduces atherosclerosis, but has no major effect on angiotensin II induced aneurysms in LDL receptor deficient mice. PLoS One. 2009;4:e6113.

    PubMed  Google Scholar 

  47. Golledge J, Clancy P, Jones GT, et al. Possible association between genetic polymorphisms in transforming growth factor beta receptors, serum transforming growth factor beta1 concentration and abdominal aortic aneurysm. Br J Surg. 2009;96:628–32.

    PubMed  CAS  Google Scholar 

  48. Biros E, Walker PJ, Nataatmadja M, et al. Downregulation of transforming growth factor, beta receptor 2 and Notch signaling pathway in human abdominal aortic aneurysm. Atherosclerosis. 2012;221:383–6.

    PubMed  CAS  Google Scholar 

  49. •• Wang Y, Ait-Oufella H, Herbin O, et al. TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J Clin Invest. 2010;120:422–32. This article reports a comprehensive study that has explored complex mechanisms of abdominal aortic aneurysms (AAAs) involving inhibition of systemic TGF-beta and its related signaling.

    PubMed  CAS  Google Scholar 

  50. Dai J, Losy F, Guinault AM, et al. Overexpression of transforming growth factor-beta1 stabilizes already-formed aortic aneurysms: a first approach to induction of functional healing by endovascular gene therapy. Circulation. 2005;112:1008–15.

    PubMed  CAS  Google Scholar 

  51. Dai J, Michineau S, Franck G, et al. Long term stabilization of expanding aortic aneurysms by a short course of cyclosporine A through transforming growth factor-beta induction. PLoS One. 2011;6:28903.

    Google Scholar 

  52. •• Lindeman JH, Rabelink TJ, van Bockel JH. Immunosuppression and the abdominal aortic aneurysm: doctor jekyll or mister hyde? Circulation. 2011;124:e463–5. This is a case report that provides compelling evidence that immunosuppression and antiinflammatory therapies in human AAAs are potentially harmful, thus should be considered with cautions.

    PubMed  Google Scholar 

  53. Pagano MB, Zhou HF, Ennis TL, et al. Complement-dependent neutrophil recruitment is critical for the development of elastase-induced abdominal aortic aneurysm. Circulation. 2009;119:1805–13.

    PubMed  CAS  Google Scholar 

  54. • Zhou HF, Yan H, Stover CM, et al. Antibody directs properdin-dependent activation of the complement alternative pathway in a mouse model of abdominal aortic aneurysm. Proc Natl Acad Sci USA. 2012;109:415–22. This study emphasizes the importance of the complement alternative pathway in the development of elastase-induced AAAs. The findings implicate that an innate immunity to self-antigens activates the complement system, leading to inflammation and consequent formation of AAAs.

    Google Scholar 

  55. Wu G, Chen T, Shahsafaei A, et al. Complement regulator CD59 protects against angiotensin II-induced abdominal aortic aneurysms in mice. Circulation. 2010;121:1338–46.

    PubMed  CAS  Google Scholar 

  56. Takagi H, Manabe H, Kawai N, et al. Circulating matrix metalloproteinase-9 concentrations and abdominal aortic aneurysm presence: a meta-analysis. Interact Cardiovasc Thorac Surg. 2009;9:437–40.

    PubMed  Google Scholar 

  57. Petrinec D, Liao S, Holmes DR, et al. Doxycycline inhibition of aneurysmal degeneration in an elastase-induced rat model of abdominal aortic aneurysm: preservation of aortic elastin associated with suppressed production of 92 kD gelatinase. J Vasc Surg. 1996;23:336–46.

    PubMed  CAS  Google Scholar 

  58. Curci JA, Petrinec D, Liao S, et al. Pharmacologic suppression of experimental abdominal aortic aneurysms: a comparison of doxycycline and four chemically modified tetracyclines. J Vasc Surg. 1998;28:1082–93.

    PubMed  CAS  Google Scholar 

  59. Manning MW, Cassis LA, Daugherty A. Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2003;23:483–8.

    PubMed  CAS  Google Scholar 

  60. Turner GH, Olzinski AR, Bernard RE, et al. In vivo serial assessment of aortic aneurysm formation in apolipoprotein E-deficient mice via MRI. Circ Cardiovasc Imaging. 2008;1:220–6.

    PubMed  Google Scholar 

  61. • Xiong W, Knispel R, MacTaggart J, et al. Membrane-type 1 matrix metalloproteinase regulates macrophage-dependent elastolytic activity and aneurysm formation in vivo. J Biol Chem. 2009;284:1765–71. This article has demonstrated that membrane-type 1 matrix metalloproteinase in macrophages, in the absence of MMP-2 or MMP-9, is sufficient to promote calcium chloride-induced AAAs.

    PubMed  CAS  Google Scholar 

  62. Longo GM, Buda SJ, Fiotta N, et al. MMP-12 has a role in abdominal aortic aneurysms in mice. Surgery. 2005;137:457–62.

    PubMed  Google Scholar 

  63. Pagano MB, Bartoli MA, Ennis TL, et al. Critical role of dipeptidyl peptidase I in neutrophil recruitment during the development of experimental abdominal aortic aneurysms. Proc Natl Acad Sci USA. 2007;104:2855–60.

    PubMed  CAS  Google Scholar 

  64. Shimizu K, Mitchell RN, Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2006;26:987–94.

    PubMed  CAS  Google Scholar 

  65. Shi GP, Sukhova GK, Grubb A, et al. Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J Clin Invest. 1999;104:1191–7.

    PubMed  CAS  Google Scholar 

  66. Sun J, Sukhova GK, Zhang J, et al. Cathepsin L activity is essential to elastase perfusion-induced abdominal aortic aneurysms in mice. Arterio thromb Vasc Biol. 2011;31:2500–8.

    CAS  Google Scholar 

  67. Sun J, Sukhova GK, Zhang J, et al. Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol. 2012;32:15–23.

    PubMed  CAS  Google Scholar 

  68. Bai L, Beckers L, Wijnands E, et al. Cathepsin K gene disruption does not affect murine aneurysm formation. Atherosclerosis. 2009;209:96–103.

    PubMed  Google Scholar 

  69. Schulte S, Sun J, Libby P, et al. Cystatin C deficiency promotes inflammation in angiotensin II-induced abdominal aortic aneurisms in atherosclerotic mice. Am J Pathol. 2010;177:456–63.

    PubMed  CAS  Google Scholar 

  70. Subramanian V, Uchida HA, Ijaz T, et al. Calpain inhibition attenuates angiotensin II-induced abdominal aortic aneurysms and atherosclerosis in low-density lipoprotein receptor-deficient mice. J Cardiovasc Pharmacol. 2012;59:66–76.

    PubMed  CAS  Google Scholar 

  71. Sun J, Zhang J, Lindholt JS, et al. Critical role of mast cell chymase in mouse abdominal aortic aneurysm formation. Circulation. 2009;120:973–82.

    PubMed  CAS  Google Scholar 

  72. Inoue N, Muramatsu M, Jin D, et al. Involvement of vascular angiotensin II-forming enzymes in the progression of aortic abdominal aneurysms in angiotensin II- infused apoE-deficient mice. J Atheroscler Thromb. 2009;16:164–71.

    PubMed  CAS  Google Scholar 

  73. Gong Y, Hart E, Shchurin A, Hoover-Plow J. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J Clin Invest. 2008;118:3012–24.

    PubMed  CAS  Google Scholar 

  74. Qian HS, Gu JM, Liu P, et al. Overexpression of PAI-1 prevents the development of abdominal aortic aneurysm in mice. Gene Ther. 2008;15:224–32.

    PubMed  CAS  Google Scholar 

  75. Deng GG, Martin-McNulty B, Sukovich DA, et al. Urokinase-type plasminogen activator plays a critical role in angiotensin II-induced abdominal aortic aneurysm. Circ Res. 2003;92:510–7.

    PubMed  CAS  Google Scholar 

  76. Uchida HA, Poduri A, Subramanian V, et al. Urokinase-type plasminogen activator deficiency in bone marrow-derived cells augments rupture of angiotensin II-induced abdominal aortic aneurysms. Arterio Thromb Vasc Biol. 2011;31:2845–52.

    CAS  Google Scholar 

  77. Di Gennaro A, Wagsater D, Mayranpaa MI, et al. Increased expression of leukotriene C4 synthase and predominant formation of cysteinyl-leukotrienes in human abdominal aortic aneurysm. Proc Natl Acad Sci USA. 2010;107:21093–7.

    PubMed  Google Scholar 

  78. Zhao L, Moos MP, Grabner R, et al. The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nat Med. 2004;10:966–73.

    PubMed  CAS  Google Scholar 

  79. Cao RY, Adams MA, Habenicht AJ, Funk CD. Angiotensin II-induced abdominal aortic aneurysm occurs independently of the 5-lipoxygenase pathway in apolipoprotein E-deficient mice. Prostag Other Lipid Mediat. 2007;84:34–42.

    CAS  Google Scholar 

  80. Revermann M, Mieth A, Popescu L, et al. A pirinixic acid derivative (LP105) inhibits murine 5-lipoxygenase activity and attenuates vascular remodelling in a murine aortic aneurysm model. Br J Pharmacol. 2011;163:1721–32.

    PubMed  CAS  Google Scholar 

  81. Holmes DR, Wester W, Thompson RW, Reilly JM. Prostaglandin E2 synthesis and cyclooxygenase expression in abdominal aortic aneurysms. J Vasc Surg. 1997;25:810–5.

    PubMed  CAS  Google Scholar 

  82. Miralles M, Wester W, Sicard GA, et al. Indomethacin inhibits expansion of experimental aortic aneurysms via inhibition of the Cox2 isoform of cyclooxygenase. J Vasc Surg. 1999;29:884–93.

    PubMed  CAS  Google Scholar 

  83. Gitlin JM, Trivedi DB, Langenbach R, Loftin CD. Genetic deficiency of cyclooxygenase-2 attenuates abdominal aortic aneurysm formation in mice. Cardiovasc Res. 2007;73:227–36.

    PubMed  CAS  Google Scholar 

  84. King VL, Trivedi D, Gitlin JM, Loftin CD. Selective cyclooxygenase-2 inhibition with celecoxib decreases angiotensin II-induced abdominal aortic aneurysm formation in mice. Arterioscler Thromb Vasc Biol. 2006;26:1137–43.

    PubMed  CAS  Google Scholar 

  85. Wang M, Lee E, Song W, et al. Microsomal prostaglandin E synthase-1 deletion suppresses oxidative stress and angiotensin II-induced abdominal aortic aneurysm formation. Circulation. 2008;117:1302–9.

    PubMed  CAS  Google Scholar 

  86. Bayston T, Ramessur S, Reise J, et al. Prostaglandin E-2 receptors in abdominal aortic aneurysm and human aortic smooth muscle cells. J Vasc Surg. 2003;38:354–9.

    PubMed  CAS  Google Scholar 

  87. Yokoyama U, Ishiwata R, Jin MH, et al. Inhibition of EP4 Signaling Attenuates Aortic Aneurysm Formation. PLoS One. 2012;7:e36724.

    PubMed  CAS  Google Scholar 

  88. Tang EH, Shvartz E, Shimizu K, et al. Deletion of EP4 on bone marrow-derived cells enhances inflammation and angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol. 2011;31:261–9.

    PubMed  CAS  Google Scholar 

  89. Zack M, Boyanovsky BB, Shridas P, et al. Group X secretory phospholipase A(2) augments angiotensin II-induced inflammatory responses and abdominal aortic aneurysm formation in apoE-deficient mice. Atherosclerosis. 2011;214:58–64.

    PubMed  CAS  Google Scholar 

  90. Watanabe K, Fujioka D, Saito Y, et al. Group X secretory PLA2 in neutrophils plays a pathogenic role in abdominal aortic aneurysms in mice. Am J Physiol Heart Circ Physiol. 2012;302:H95–104.

    PubMed  CAS  Google Scholar 

  91. Bruemmer D, Collins AR, Noh G, et al. Angiotensin II-accelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice. J Clin Invest. 2003;112:1318–31.

    PubMed  CAS  Google Scholar 

  92. Schultz G, Tedesco MM, Sho E, et al. Enhanced abdominal aortic aneurysm formation in thrombin-activatable procarboxypeptidase B-deficient mice. Arterioscler Thromb Vasc Biol. 2010;30:1363–70.

    PubMed  CAS  Google Scholar 

  93. Xiao J, Angsana J, Wen J, et al. Syndecan-1 displays a protective role in aortic aneurysm formation by modulating T cell-mediated responses. Arterioscler Thromb Vasc Biol. 2012;32:386–96.

    PubMed  CAS  Google Scholar 

  94. Ramos-Mozo P, Madrigal-Matute J, Martinez-Pinna R, et al. Proteomic analysis of polymorphonuclear neutrophils identifies catalase as a novel biomarker of abdominal aortic aneurysm: potential implication of oxidative stress in abdominal aortic aneurysm progression. Arterioscler Thromb Vasc Biol. 2011;31:3011–9.

    PubMed  CAS  Google Scholar 

  95. Xiong W, Mactaggart J, Knispel R, et al. Inhibition of reactive oxygen species attenuates aneurysm formation in a murine model. Atherosclerosis. 2009;202:128–34.

    PubMed  CAS  Google Scholar 

  96. Gavrila D, Li WG, McCormick ML, et al. Vitamin E inhibits abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2005;25:1671–7.

    PubMed  CAS  Google Scholar 

  97. Moran CS, Cullen B, Campbell JH, Golledge J. Interaction between angiotensin II, osteoprotegerin, and peroxisome proliferator-activated receptor-gamma in abdominal aortic aneurysm. J Vasc Res. 2008;46:209–17.

    PubMed  Google Scholar 

  98. Golledge J, Cullen B, Rush C, et al. Peroxisome proliferator-activated receptor ligands reduce aortic dilatation in a mouse model of aortic aneurysm. Atherosclerosis. 2010;210:51–6.

    PubMed  CAS  Google Scholar 

  99. • Jones A, Deb R, Torsney E, et al. Rosiglitazone reduces the development and rupture of experimental aortic aneurysms. Circulation. 2009;119:3125–32. There are conflicting results in the literature regarding the role of peroxisome proliferator-activated receptor-gamma (PPARγ) in the development of AAAs. This article reports that rosiglitazone, one recognized PPARγ agonist, reduces both the development and rupture of AngII-induced AAAs in mice.

    PubMed  CAS  Google Scholar 

  100. Hamblin M, Chang L, Zhang H, et al. Vascular smooth muscle cell peroxisome proliferator-activated receptor-gamma deletion promotes abdominal aortic aneurysms. J Vasc Surg. 2010;52:984–93.

    PubMed  Google Scholar 

  101. Subramanian V, Golledge J, Ijaz T, et al. Pioglitazone-induced reductions in atherosclerosis occur via smooth muscle cell-specific interaction with PPARgamma. Circ Res. 2010;107:953–8.

    PubMed  CAS  Google Scholar 

  102. Takagi H, Matsui M, Umemoto T. A meta-analysis of clinical studies of statins for prevention of abdominal aortic aneurysm expansion. J Vasc Surg. 2010;52:1675–81.

    PubMed  Google Scholar 

  103. Shiraya S, Miyake T, Aoki M, et al. Inhibition of development of experimental aortic abdominal aneurysm in rat model by atorvastatin through inhibition of macrophage migration. Atherosclerosis. 2008;202:34–40.

    PubMed  Google Scholar 

  104. Kalyanasundaram A, Elmore JR, Manazer JR, et al. Simvastatin suppresses experimental aortic aneurysm expansion. J Vasc Surg. 2006;43:117–24.

    PubMed  Google Scholar 

  105. Steinmetz EF, Buckley C, Shames ML, et al. Treatment with simvastatin suppresses the development of experimental abdominal aortic aneurysms in normal and hypercholesterolemic mice. Ann Surg. 2005;241:92–101.

    PubMed  Google Scholar 

  106. Zhang Y, Naggar JC, Welzig CM, et al. Simvastatin inhibits angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-knockout mice: possible role of ERK. Arterioscler Thromb Vasc Biol. 2009;29:1764–71.

    PubMed  Google Scholar 

  107. Golledge J, Cullen B, Moran C, Rush C. Efficacy of simvastatin in reducing aortic dilatation in mouse models of abdominal aortic aneurysm. Cardiovasc Drugs Ther. 2010;24:373–8.

    PubMed  CAS  Google Scholar 

  108. Wang JA, Chen WA, Wang Y, et al. Statins exert differential effects on angiotensin II-induced atherosclerosis, but no benefit for abdominal aortic aneurysms. Atherosclerosis. 2011;217:90–6.

    PubMed  CAS  Google Scholar 

  109. •• Maegdefessel L, Azuma J, Toh R, et al. Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J Clin Invest. 2012;122:497–506. This is the first reported study that has explored roles of microRNAs in the development of AAAs. The contribution of microRNA-29b to AAAs was determined in two mouse models, C57BL/6 mice perfused with elastase and ApoE -/- mice infused with AngII. Interestingly, manipulation of microRNA-29b led to more profound influence on elastase-induced AAAs than on AngII-induced AAAs.

    PubMed  CAS  Google Scholar 

  110. Boon RA, Seeger T, Heydt S, et al. MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ Res. 2011;109:1115–9.

    PubMed  CAS  Google Scholar 

  111. Milewicz DM. MicroRNAs, fibrotic remodeling, and aortic aneurysms. J Clin Invest. 2012;122:490–3.

    PubMed  CAS  Google Scholar 

  112. •• Maegdefessel L, Azuma J, Toh R, et al. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med. 2012;4:122ra22. This article studied the role of microRNA-21 in the prevention of experimental AAAs. Particularly of importance, this study demonstrated nicotine, the addictive component of tobacco, augmented AAAs, which was attenuated by overexpression of microRNA-21.

    PubMed  CAS  Google Scholar 

  113. Ailawadi G, Eliason JL, Roelofs KJ, et al. Gender differences in experimental aortic aneurysm formation. Arterioscler Thromb Vasc Biol. 2004;24:2116–22.

    PubMed  CAS  Google Scholar 

  114. Sinha I, Cho BS, Roelofs KJ, et al. Female gender attenuates cytokine and chemokine expression and leukocyte recruitment in experimental rodent abdominal aortic aneurysms. Ann NY Acad Sci. 2006;1085:367–79.

    PubMed  CAS  Google Scholar 

  115. Manning MW, Cassis LA, Huang J, et al. Abdominal aortic aneurysms: fresh insights from a novel animal model of the disease. Vasc Med. 2002;7:45–54.

    PubMed  Google Scholar 

  116. Henriques TA, Huang J, D'Souza SS, et al. Orchidectomy, but not ovariectomy, regulates angiotensin II-induced vascular diseases in apolipoprotein E-deficient mice. Endocrinology. 2004;145:3866–72.

    PubMed  CAS  Google Scholar 

  117. Henriques T, Zhang X, Yiannikouris FB, et al. Androgen increases AT1a receptor expression in abdominal aortas to promote angiotensin II-induced AAAs in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2008;28:1251–6.

    PubMed  CAS  Google Scholar 

  118. Martin McNulty B, Tham DM, daCunha V, et al. 17 beta-estradiol attenuates development of angiotensin II induced aortic abdominal aneurysm in apolipoprotein E deficient mice. Arterioscler Thromb Vasc Biol. 2003;23:1627–32.

    PubMed  CAS  Google Scholar 

  119. Zhang X, Thatcher SE, Rateri DL et al.: Transient exposure of neonatal female mice to testosterone abrogates the sexual dimorphism of abdominal aortic aneurysms. Circ Res. 2012;110:e73–85.

    Google Scholar 

  120. Yoshimura K, Aoki H, Ikeda Y, et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med. 2005;11:1330–8.

    PubMed  CAS  Google Scholar 

  121. Barisione C, Charnigo R, Howatt DA, et al. Rapid dilation of the abdominal aorta during infusion of angiotensin II detected by noninvasive high-frequency ultrasonography. J Vasc Surg. 2006;44:372–6.

    PubMed  Google Scholar 

  122. Thompson RW, Baxter BT. MMP inhibition in abdominal aortic aneurysms. Rationale for a prospective randomized clinical trial. Ann NY Acad Sci. 1999;878:159–78.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research work in the authors’ laboratories is supported by grants from the National Institutes of Health (HL80100, HL062846, HL107326, HL107319, and HL73085).

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Daugherty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Rateri, D.L., Bruemmer, D. et al. Novel Mechanisms of Abdominal Aortic Aneurysms. Curr Atheroscler Rep 14, 402–412 (2012). https://doi.org/10.1007/s11883-012-0271-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-012-0271-y

Keywords

Navigation