Skip to main content
Log in

The Role of Intravascular Ultrasound in the Determination of Progression and Regression of Coronary Artery Disease

  • Coronary Heart Disease (J Farmer, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

New imaging techniques have been used to examine surrogate markers of atherosclerotic burden to determine the effects of pharmacologic intervention. In this review, we discuss the role of intravascular ultrasound (IVUS) in the determination of progression and regression of coronary artery disease. Several methodologic issues are discussed (selection of segments to analyze, measurement error, high drop out rate, and optimal IVUS variables). Usefulness of new IVUS-derived variables (plaque composition by radiofrequency analysis, deformability by palpography, and endothelial shear stress by three-dimensional coronary anatomy reconstructed from IVUS and angiography) will be determined. Based on comparisons between IVUS and clinical studies, IVUS variables seem to be a valid surrogate in studies using atorvastatin in patients with dyslipidemia. It remains unclear whether IVUS variables are valid surrogates for other drugs/diseases. As such, further studies are needed to determine whether IVUS can serve as an efficient surrogate for clinical events in coronary disease trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Tuzcu EM, Kapadia SR, Tutar E, et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation. 2001;103:2705–10.

    PubMed  CAS  Google Scholar 

  2. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  PubMed  CAS  Google Scholar 

  3. Armstrong ML, Heistad DD, Megan MB, et al. Reversibility of atherosclerosis. Cardiovasc Clin. 1990;20:113–26.

    PubMed  CAS  Google Scholar 

  4. Nissen SE, Nicholls SJ, Sipahi I, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295:1556–65.

    Article  PubMed  CAS  Google Scholar 

  5. Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol. 1974;34:48–55.

    Article  PubMed  CAS  Google Scholar 

  6. Austen WG, Edwards JE, Frye RL, et al. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation. 1975;51:5–40.

    PubMed  CAS  Google Scholar 

  7. Balk EM, Karas RH, Jordan HS, et al. Effects of statins on vascular structure and function: a systematic review. Am J Med. 2004;117:775–90.

    Article  PubMed  CAS  Google Scholar 

  8. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    Article  PubMed  CAS  Google Scholar 

  9. •• Kaneda H, Ako J, Terashima M. Intravascular ultrasound imaging for assessing regression and progression in coronary artery disease. Am J Cardiol. 2011;106:1735–46. In this systematic review of randomized IVUS studies for assessing progression and regression in coronary artery disease, each study description was presented and methodologic issues were discussed in detail.

    Article  Google Scholar 

  10. Gerstein HC, Ratner RE, Cannon CP, et al. Effect of rosiglitazone on progression of coronary atherosclerosis in patients with type 2 diabetes mellitus and coronary artery disease: the assessment on the prevention of progression by rosiglitazone on atherosclerosis in diabetes patients with cardiovascular history trial. Circulation. 2010;121:1176–87.

    Article  PubMed  CAS  Google Scholar 

  11. Hirohata A, Yamamoto K, Miyoshi T, et al. Impact of olmesartan on progression of coronary atherosclerosis a serial volumetric intravascular ultrasound analysis from the OLIVUS (impact of OLmesarten on progression of coronary atherosclerosis: evaluation by intravascular ultrasound) trial. J Am Coll Cardiol. 2010;55:976–82.

    Article  PubMed  CAS  Google Scholar 

  12. Waksman R, Torguson R, Kent KM, et al. A first-in-man, randomized, placebo-controlled study to evaluate the safety and feasibility of autologous delipidated high-density lipoprotein plasma infusions in patients with acute coronary syndrome. J Am Coll Cardiol. 2010;55:2727–35.

    Article  PubMed  Google Scholar 

  13. Hong YJ, Jeong MH, Hachinohe D, et al. Comparison of effects of rosuvastatin and atorvastatin on plaque regression in Korean patients with untreated intermediate coronary stenosis. Circ J. 2011;75:398–406.

    Article  PubMed  CAS  Google Scholar 

  14. You SH, Kim BS, Hong SJ, et al. The effects of pioglitazone in reducing atherosclerosis progression and neointima volume in type 2 diabetic patients: prospective randomized study with volumetric intravascular ultrasonography analysis. Korean Circ J. 2010;40:625–31.

    Article  PubMed  CAS  Google Scholar 

  15. Kojima T, Miyauchi K, Yokoyama T, et al. Azelnidipine and amlodipine anti-coronary atherosclerosis trial in hypertensive patients undergoing coronary intervention by serial volumetric intravascular ultrasound analysis in Juntendo University (ALPS-J). Circ J. 2011;75:1071–9.

    Article  PubMed  CAS  Google Scholar 

  16. Han SH, Chung WJ, Kang WC, et al.: Rosuvastatin combined with ramipril significantly reduced atheroma volume by anti-inflammatory mechanism: Comparative analysis with rosuvastatin alone by intravascular ultrasound. Int J Cardiol. 2011*.

  17. Hong SJ, Choi SC, Ahn CM, et al. Telmisartan reduces neointima volume and pulse wave velocity 8 months after zotarolimus-eluting stent implantation in hypertensive type 2 diabetic patients. Heart. 2011;97:1425–32.

    Article  PubMed  CAS  Google Scholar 

  18. Schartl M, Bocksch W, Koschyk DH, et al. Use of intravascular ultrasound to compare effects of different strategies of lipid-lowering therapy on plaque volume and composition in patients with coronary artery disease. Circulation. 2001;104:387–92.

    Article  PubMed  CAS  Google Scholar 

  19. Okazaki S, Yokoyama T, Miyauchi K, et al. Early statin treatment in patients with acute coronary syndrome: demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: the ESTABLISH Study. Circulation. 2004;110:1061–8.

    Article  PubMed  CAS  Google Scholar 

  20. Petronio AS, Amoroso G, Limbruno U, et al. Simvastatin does not inhibit intimal hyperplasia and restenosis but promotes plaque regression in normocholesterolemic patients undergoing coronary stenting: a randomized study with intravascular ultrasound. Am Heart J. 2005;149:520–6.

    Article  PubMed  CAS  Google Scholar 

  21. Yokoyama M, Komiyama N, Courtney BK, et al. Plasma low-density lipoprotein reduction and structural effects on coronary atherosclerotic plaques by atorvastatin as clinically assessed with intravascular ultrasound radio-frequency signal analysis: a randomized prospective study. Am Heart J. 2005;150:287.

    Article  PubMed  Google Scholar 

  22. Tani S, Watanabe I, Anazawa T, et al. Effect of pravastatin on malondialdehyde-modified low-density lipoprotein levels and coronary plaque regression as determined by three-dimensional intravascular ultrasound. Am J Cardiol. 2005;96:1089–94.

    Article  PubMed  CAS  Google Scholar 

  23. Yamada T, Azuma A, Sasaki S, et al. Randomized evaluation of atorvastatin in patients with coronary heart disease: a serial intravascular ultrasound study. Circ J. 2007;71:1845–50.

    Article  PubMed  CAS  Google Scholar 

  24. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004;291:1071–80.

    Article  PubMed  CAS  Google Scholar 

  25. Kawasaki M, Sano K, Okubo M, et al. Volumetric quantitative analysis of tissue characteristics of coronary plaques after statin therapy using three-dimensional integrated backscatter intravascular ultrasound. J Am Coll Cardiol. 2005;45:1946–53.

    Article  PubMed  CAS  Google Scholar 

  26. Hong MK, Park DW, Lee CW, et al. Effects of statin treatments on coronary plaques assessed by volumetric virtual histology intravascular ultrasound analysis. JACC Cardiovasc Interv. 2009;2:679–88.

    Article  PubMed  Google Scholar 

  27. Hiro T, Kimura T, Morimoto T, et al. Effect of intensive statin therapy on regression of coronary atherosclerosis in patients with acute coronary syndrome: a multicenter randomized trial evaluated by volumetric intravascular ultrasound using pitavastatin versus atorvastatin (JAPAN-ACS [Japan assessment of pitavastatin and atorvastatin in acute coronary syndrome] study). J Am Coll Cardiol. 2009;54:293–302.

    Article  PubMed  Google Scholar 

  28. Toi T, Taguchi I, Yoneda S, et al. Early effect of lipid-lowering therapy with pitavastatin on regression of coronary atherosclerotic plaque. Circ J. 2009;73:1466–72.

    Article  PubMed  CAS  Google Scholar 

  29. Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290:2292–300.

    Article  PubMed  CAS  Google Scholar 

  30. Nissen SE, Tardif JC, Nicholls SJ, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. 2007;356:1304–16.

    Article  PubMed  CAS  Google Scholar 

  31. Tardif JC, Gregoire J, L’Allier PL, et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA. 2007;297:1675–82.

    Article  PubMed  Google Scholar 

  32. Tardif JC, Gregoire J, L’Allier PL, et al. Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation. 2004;110:3372–7.

    Article  PubMed  CAS  Google Scholar 

  33. Nissen SE, Tuzcu EM, Brewer HB, et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med. 2006;354:1253–63.

    Article  PubMed  CAS  Google Scholar 

  34. Tardif JC, Gregoire J, Schwartz L, et al. Effects of AGI-1067 and probucol after percutaneous coronary interventions. Circulation. 2003;107:552–8.

    Article  PubMed  CAS  Google Scholar 

  35. Tardif JC, Gregoire J, L’Allier PL, et al. Effects of the antioxidant succinobucol (AGI-1067) on human atherosclerosis in a randomized clinical trial. Atherosclerosis. 2008;197:480–6.

    Article  PubMed  CAS  Google Scholar 

  36. Rodriguez-Granillo GA, Vos J, Bruining N, et al. Long-term effect of perindopril on coronary atherosclerosis progression (from the perindopril’s prospective effect on coronary atherosclerosis by angiography and intravascular ultrasound evaluation [PERSPECTIVE] study). Am J Cardiol. 2007;100:159–63.

    Article  PubMed  CAS  Google Scholar 

  37. Luscher TF, Pieper M, Tendera M, et al. A randomized placebo-controlled study on the effect of nifedipine on coronary endothelial function and plaque formation in patients with coronary artery disease: the ENCORE II study. Eur Heart J. 2009;30:1590–7.

    Article  PubMed  Google Scholar 

  38. Nissen SE, Tuzcu EM, Libby P, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA. 2004;292:2217–25.

    Article  PubMed  CAS  Google Scholar 

  39. Nissen SE, Nicholls SJ, Wolski K, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA. 2008;299:1561–73.

    Article  PubMed  CAS  Google Scholar 

  40. Ogasawara D, Shite J, Shinke T, et al. Pioglitazone reduces the necrotic-core component in coronary plaque in association with enhanced plasma adiponectin in patients with type 2 diabetes mellitus. Circ J. 2009;73:343–51.

    Article  PubMed  CAS  Google Scholar 

  41. Nakayama T, Komiyama N, Yokoyama M, et al. Pioglitazone induces regression of coronary atherosclerotic plaques in patients with type 2 diabetes mellitus or impaired glucose tolerance: A randomized prospective study using intravascular ultrasound. Int J Cardiol. 2010;138:157–65.

    Article  PubMed  Google Scholar 

  42. Nissen SE, Nicholls SJ, Wolski K, et al. Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA. 2008;299:1547–60.

    Article  PubMed  CAS  Google Scholar 

  43. Serruys PW, Garcia-Garcia HM, Buszman P, et al. Effects of the direct lipoprotein-associated phospholipase A(2) inhibitor darapladib on human coronary atherosclerotic plaque. Circulation. 2008;118:1172–82.

    Article  PubMed  CAS  Google Scholar 

  44. Chatzizisis YS, Coskun AU, Jonas M, et al. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49:2379–93.

    Article  PubMed  CAS  Google Scholar 

  45. Pasterkamp G, Wensing PJ, Post MJ, et al. Paradoxical arterial wall shrinkage may contribute to luminal narrowing of human atherosclerotic femoral arteries. Circulation. 1995;91:1444–9.

    PubMed  CAS  Google Scholar 

  46. Franzen D, Sechtem U, Hopp HW. Comparison of angioscopic, intravascular ultrasonic, and angiographic detection of thrombus in coronary stenosis. Am J Cardiol. 1998;82:1273–5. A1279.

    Article  PubMed  CAS  Google Scholar 

  47. Tobis JM, Perlowski A. Atheroma volume by intravascular ultrasound as a surrogate for clinical end points. J Am Coll Cardiol. 2009;53:1116–8.

    Article  PubMed  Google Scholar 

  48. Tanaka K, Carlier SG, Mintz GS, et al. The accuracy of length measurements using different intravascular ultrasound motorized transducer pullback systems. Int J Cardiovasc Imaging. 2007;23:733–8.

    Article  PubMed  Google Scholar 

  49. •• Mintz GS, Garcia-Garcia HM, Nicholls SJ, et al. Clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound regression/progression studies. EuroIntervention. 2011;6:1123–30. This article discussed standards for image acquisition, definitions, criteria, analyses, and endpoints in detail.

    Article  PubMed  Google Scholar 

  50. Juni P, Altman DG, Egger M. Systematic reviews in health care: Assessing the quality of controlled clinical trials. BMJ. 2001;323:42–6.

    Article  PubMed  CAS  Google Scholar 

  51. Kaul S, Diamond GA. Good enough: a primer on the analysis and interpretation of noninferiority trials. Ann Intern Med. 2006;145:62–9.

    PubMed  Google Scholar 

  52. Ma J, Morita T, Kaneda H. Intravascular ultrasound parameters in non-inferiority trial. Circ J. 2011;75:2282.

    Article  PubMed  Google Scholar 

  53. Thim T, Hagensen MK, Wallace-Bradley D, et al. Unreliable assessment of necrotic core by virtual histology intravascular ultrasound in porcine coronary artery disease. Circ Cardiovasc Imaging. 2010;3:384–91.

    Article  PubMed  Google Scholar 

  54. Nasu K, Tsuchikane E, Katoh O, et al. Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol. 2006;47:2405–12.

    Article  PubMed  Google Scholar 

  55. Surmely JF, Nasu K, Fujita H, et al. Coronary plaque composition of culprit/target lesions according to the clinical presentation: a virtual histology intravascular ultrasound analysis. Eur Heart J. 2006;27:2939–44.

    Article  PubMed  Google Scholar 

  56. Kaneda H. Re: coronary plaque composition of culprit/target lesions according to the clinical presentation: a virtual histology intravascular ultrasound analysis. Eur Heart J. 2007;28:1784.

    Article  PubMed  Google Scholar 

  57. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    Article  PubMed  CAS  Google Scholar 

  58. Samady H, Eshtehardi P, McDaniel MC, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation. 2011;124:779–88.

    Article  PubMed  CAS  Google Scholar 

  59. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  PubMed  CAS  Google Scholar 

  60. Sever PS, Dahlof B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003;361:1149–58.

    Article  PubMed  CAS  Google Scholar 

  61. Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495–504.

    Article  PubMed  CAS  Google Scholar 

  62. Nicholls SJ, Borgman M, Nissen SE, et al. Impact of statins on progression of atherosclerosis: rationale and design of SATURN (Study of Coronary Atheroma by InTravascular Ultrasound: effect of Rosuvastatin versus AtorvastatiN). Curr Med Res Opin. 2011;27:1119–29.

    Article  PubMed  CAS  Google Scholar 

  63. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.

    Article  PubMed  CAS  Google Scholar 

  64. Fayad ZA, Mani V, Woodward M, et al.: Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet. 2011;378:1547–59.

    Google Scholar 

  65. Hartmann M, Huisman J, Bose D, et al. Serial intravascular ultrasound assessment of changes in coronary atherosclerotic plaque dimensions and composition: an update. Eur J Echocardiogr. 2011;12:313–21.

    Article  PubMed  Google Scholar 

  66. Tardif JC, McMurray JJ, Klug E, et al. Effects of succinobucol (AGI-1067) after an acute coronary syndrome: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;371:1761–8.

    Article  PubMed  CAS  Google Scholar 

  67. Fox KM. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet. 2003;362:782–8.

    Article  PubMed  CAS  Google Scholar 

  68. Poole-Wilson PA, Lubsen J, Kirwan BA, et al. Effect of long-acting nifedipine on mortality and cardiovascular morbidity in patients with stable angina requiring treatment (ACTION trial): randomised controlled trial. Lancet. 2004;364:849–57.

    Article  PubMed  CAS  Google Scholar 

  69. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366:1279–89.

    Article  PubMed  CAS  Google Scholar 

  70. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373:2125–35.

    Article  PubMed  CAS  Google Scholar 

  71. Nissen SE, Wolski K. Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med. 2010;170:1191–201.

    Article  PubMed  CAS  Google Scholar 

  72. Topol EJ, Bousser MG, Fox KA, et al. Rimonabant for prevention of cardiovascular events (CRESCENDO): a randomised, multicentre, placebo-controlled trial. Lancet. 2010;376:517–23.

    Article  PubMed  CAS  Google Scholar 

  73. White H, Held C, Stewart R, et al. Study design and rationale for the clinical outcomes of the STABILITY Trial (STabilization of Atherosclerotic plaque By Initiation of darapLadIb TherapY) comparing darapladib versus placebo in patients with coronary heart disease. Am Heart J. 2010;160:655–61.

    Article  PubMed  CAS  Google Scholar 

  74. O’Donoghue ML, Braunwald E, White HD, et al. Study design and rationale for the Stabilization of pLaques usIng Darapladib-Thrombolysis in Myocardial Infarction (SOLID-TIMI 52) trial in patients after an acute coronary syndrome. Am Heart J. 2011;162:613–9.

    Article  PubMed  Google Scholar 

  75. von Birgelen C, Hartmann M, Mintz GS, et al. Relationship between cardiovascular risk as predicted by established risk scores versus plaque progression as measured by serial intravascular ultrasound in left main coronary arteries. Circulation. 2004;110:1579–85.

    Article  Google Scholar 

  76. Nicholls SJ, Hsu A, Wolski K, et al. Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J Am Coll Cardiol. 2010;55:2399–407.

    Article  PubMed  Google Scholar 

  77. Fleming TR, DeMets DL. Surrogate end points in clinical trials: are we being misled? Ann Intern Med. 1996;125:605–13.

    PubMed  CAS  Google Scholar 

  78. Kastelein JJ, Akdim F, Stroes ES, et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N Engl J Med. 2008;358:1431–43.

    Article  PubMed  CAS  Google Scholar 

  79. Taylor AJ, Villines TC, Stanek EJ, et al. Extended-release niacin or ezetimibe and carotid intima-media thickness. N Engl J Med. 2009;361:2113–22.

    Article  PubMed  CAS  Google Scholar 

  80. Baigent C, Landray MJ, Reith C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377:2181–92.

    Article  PubMed  CAS  Google Scholar 

  81. Costanzo P, Perrone-Filardi P, Vassallo E, et al. Does carotid intima-media thickness regression predict reduction of cardiovascular events? A meta-analysis of 41 randomized trials. J Am Coll Cardiol. 2011;56:2006–20.

    Article  Google Scholar 

Download references

Acknowledgment

We thank Heidi N, Bonneau, RN, MS, CCA, for her editorial review of the manuscript.

Disclosure

No conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Kaneda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneda, H., Terashima, M. & Yamaguchi, H. The Role of Intravascular Ultrasound in the Determination of Progression and Regression of Coronary Artery Disease. Curr Atheroscler Rep 14, 175–185 (2012). https://doi.org/10.1007/s11883-012-0234-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-012-0234-3

Keywords

Navigation