Skip to main content

Advertisement

Log in

Cardiovascular disease-related genes and regulation by diet

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Diets rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs) such as α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid are associated with decreased incidence and severity of cardiovascular disease (CVD). At least some of the beneficial effects of these dietary fatty acids are mediated by metabolites such as prostaglandins, leukotrienes, thromboxanes, and resolvins. The effects of n-3 PUFAs often differ from those of other fatty acids with very similar structures, such as linoleic acid and arachidonic acid (n-6 PUFAs) and their corresponding metabolites. This article reviews the evidence that specific receptors exist for fatty acids or their metabolites that are able to regulate gene expression and coordinately affect metabolic or signaling pathways associated with CVD. Four nuclear receptor subfamilies that respond to dietary and endogenous ligands and have implications for CVD are emphasized in this article: peroxisome proliferator-activated receptors, retinoid X receptors, liver X receptors, and the farnesoid X receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Renaud S, Lanzmann-Petithory D: Coronary heart disease: dietary links and pathogenesis. Public Health Nutr 2001, 4:459–474.

    Article  CAS  PubMed  Google Scholar 

  2. Hu FB, Willett WC: Optimal diets for prevention of coronary heart disease. JAMA 2002, 288:2569–2578.

    Article  CAS  PubMed  Google Scholar 

  3. Erkkila A, de Mello VD, Riserus U, Laaksonen DE: Dietary fatty acids and cardiovascular disease: an epidemiological approach. Prog Lipid Res 2008, 47:172–187.

    Article  PubMed  CAS  Google Scholar 

  4. Mozaffarian D, Willett WC: Trans fatty acids and cardiovascular risk: a unique cardiometabolic imprint? Curr Atheroscler Rep 2007, 9:486–493.

    Article  CAS  PubMed  Google Scholar 

  5. Siddiqui RA, Harvey KA, Zaloga GP: Modulation of enzymatic activities by n-3 polyunsaturated fatty acids to support cardiovascular health. J Nutr Biochem 2008, 19:417–437.

    Article  CAS  PubMed  Google Scholar 

  6. Nuclear Receptor Nomenclature Committee: A unified nomenclature system for the nuclear receptor superfamily. Cell 1999, 97:161–163.

    Article  Google Scholar 

  7. Khan SA, Vanden Heuvel JP: Role of nuclear receptors in the regulation of gene expression by dietary fatty acids (review). J Nutr Biochem 2003, 14:554–567.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao A, Yu J, Lew JL, et al.: Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets. DNA Cell Biol 2004, 23:519–526.

    Article  CAS  PubMed  Google Scholar 

  9. Nagao K, Yanagita T: Bioactive lipids in metabolic syndrome. Prog Lipid Res 2008, 47:127–146.

    CAS  PubMed  Google Scholar 

  10. Francis GA, Fayard E, Picard F, Auwerx J: Nuclear receptors and the control of metabolism. Annu Rev Physiol 2003, 65:261–311.

    Article  CAS  PubMed  Google Scholar 

  11. Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ: Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptoralpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci 2006, 92:476–489.

    Article  Google Scholar 

  12. Moya-Camarena SY, Vanden Heuvel JP, Blanchard SG, et al.: Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARalpha. J Lipid Res 1999, 40:1426–1433.

    CAS  PubMed  Google Scholar 

  13. Moya-Camarena SY, Vanden Heuvel JP, Belury MA: Conjugated linoleic acid activates peroxisome proliferatoractivated receptor alpha and beta subtypes but does not induce hepatic peroxisome proliferation in Sprague-Dawley rats. Biochim Biophys Acta 1999, 1436:331–342.

    CAS  PubMed  Google Scholar 

  14. Ziouzenkova O, Perrey S, Asatryan L, et al.: Lipolysis of triglyceride-rich lipoproteins generates PPAR ligands: evidence for an antiinflammatory role for lipoprotein lipase. Proc Natl Acad Sci U S A 2003, 100:2730–2735.

    Article  CAS  PubMed  Google Scholar 

  15. Chawla A, Lee CH, Barak Y, et al.: PPARdelta is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci U S A 2003, 100:1268–1273.

    Article  CAS  PubMed  Google Scholar 

  16. Cowart LA, Wei S, Hsu MH, et al.: The CYP4A isoforms hydroxylate epoxyeicosatrienoic acids to form high affinity peroxisome proliferator-activated receptor ligands. J Biol Chem 2002, 277:35105–35112.

    Article  CAS  PubMed  Google Scholar 

  17. Krey G, Braissant O, Kalkhoven E, Perroud M, et al.: Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol 1997, 11:779–791.

    Article  CAS  PubMed  Google Scholar 

  18. Yu K, Bayona W, Kallen CB, et al.: Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem 1995, 270:23975–23983.

    Article  CAS  PubMed  Google Scholar 

  19. Willson TM, Brown PJ, Sternbach DD, Henke BR: The PPARs: from orphan receptors to drug discovery. J Med Chem 2000, 43:527–550.

    Article  CAS  PubMed  Google Scholar 

  20. Spiegelman BM: PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998, 47:507–514.

    Article  CAS  PubMed  Google Scholar 

  21. Barak Y, Nelson MC, Ong ES, et al.: PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 1999, 4:585–595.

    Article  CAS  PubMed  Google Scholar 

  22. Willson TM, Wahli W: Peroxisome proliferator-activated receptor agonists. Curr Opin Chem Biol 1997, 1:235–241.

    Article  CAS  PubMed  Google Scholar 

  23. Peters JM, Lee SS, Li W, et al.: Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta). Mol Cell Biol 2000, 20:5119–5128.

    Article  CAS  PubMed  Google Scholar 

  24. Brun RP, Tontonoz P, Forman BM, et al.: Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev 1996, 10:974–984.

    Article  CAS  PubMed  Google Scholar 

  25. Coleman JD, Prabhu KS, Thompson JT, et al.: The oxidative stress mediator 4-hydroxynonenal is an intracellular agonist of the nuclear receptor peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta). Free Radic Biol Med 2007, 42:1155–1164.

    Article  CAS  PubMed  Google Scholar 

  26. Rocchi S, Auwerx J: Peroxisome proliferator-activated receptor-gamma: a versatile metabolic regulator. Ann Med 1999, 31:342–351.

    Article  CAS  PubMed  Google Scholar 

  27. Schoonjans K, Staels B, Auwerx J: The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1996, 1302:93–109.

    CAS  PubMed  Google Scholar 

  28. Tontonoz P, Hu E, Graves RA, et al.: mPpar gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 1994, 8:1224–1234.

    Article  CAS  PubMed  Google Scholar 

  29. Tontonoz P, Nagy L, Alvarez JG, et al.: PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998, 93:241–252.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang B, Berger J, Hu E, et al.: Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol 1996, 10:1457–1466.

    Article  CAS  PubMed  Google Scholar 

  31. Ricote M, Huang JT, Welch JS, Glass CK: The peroxisome proliferator-activated receptor(PPARgamma) as a regulator of monocyte/macrophage function. J Leukoc Biol 1999, 66:733–739.

    CAS  PubMed  Google Scholar 

  32. Lehmann JM, Lenhard JM, Oliver BB, et al.: Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal antiinflammatory drugs. J Biol Chem 1997, 272:3406–3410.

    Article  CAS  PubMed  Google Scholar 

  33. de Urquiza AM, Liu S, Sjoberg M, et al.: Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 2000, 290:2140–2144.

    Article  PubMed  Google Scholar 

  34. Lengqvist J, De Urquiza AM, Bergman AC, et al.: Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand binding domain. Mol Cell Proteomics 2004, 3:692–703

    Article  CAS  PubMed  Google Scholar 

  35. Lemotte PK, Keidel S, Apfel CM: Phytanic acid is a retinoid X receptor ligand. Eur J Biochem 1996, 236:328–333.

    Article  CAS  PubMed  Google Scholar 

  36. Claudel T, Leibowitz MD, Fievet C, et al.: Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor. Proc Natl Acad Sci U S A 2001, 98:2610–2615.

    Article  CAS  PubMed  Google Scholar 

  37. Kastner P, Grondona JM, Mark M, et al.: Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 1994, 78:987–1003.

    Article  CAS  PubMed  Google Scholar 

  38. Ou J, Tu H, Shan B, et al.: Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proc Natl Acad Sci U S A 2001, 98:6027–6032.

    Article  CAS  PubMed  Google Scholar 

  39. Pawar A, Botolin D, Mangelsdorf DJ, Jump DB: The role of liver X receptor-alpha in the fatty acid regulation of hepatic gene expression. J Biol Chem 2003, 278:40736–40743.

    Article  CAS  PubMed  Google Scholar 

  40. Miyata KS, McCaw SE, Patel HV, et al.: The orphan nuclear hormone receptor LXR alpha interacts with the peroxisome proliferator-activated receptor and inhibits peroxisome proliferator signaling. J Biol Chem 1996, 271:9189–9192.

    Article  CAS  PubMed  Google Scholar 

  41. Laffitte BA, Repa JJ, Joseph SB, et al.: LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci U S A 2001, 98:507–512.

    Article  CAS  PubMed  Google Scholar 

  42. Lund EG, Menke JG, Sparrow CP: Liver X receptor agonists as potential therapeutic agents for dyslipidemia and atherosclerosis. Arterioscler Thromb Vasc Biol 2003, 23:1169–1177.

    Article  CAS  PubMed  Google Scholar 

  43. Joseph SB, McKilligin E, Pei L, et al.: Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A 2002, 99:7604–7609.

    Article  CAS  PubMed  Google Scholar 

  44. Chawla A, Barak Y, Nagy L, et al.: PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 2001, 7:48–52.

    Article  CAS  PubMed  Google Scholar 

  45. Peet DJ, Turley SD, Ma W, et al.: Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 1998, 93:693–704.

    Article  CAS  PubMed  Google Scholar 

  46. Alberti S, Schuster G, Parini P, et al.: Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. J Clin Invest 2001, 107:565–573.

    Article  CAS  PubMed  Google Scholar 

  47. Evans MJ, Mahaney PE, Borges-Marcucci L, et al.: A synthetic farnesoid X receptor (FXR) agonist promotes cholesterol lowering in models of dyslipidemia. Am J Physiol Gastrointest Liver Physiol 2009, 296:G543–G552.

    Article  CAS  PubMed  Google Scholar 

  48. Mencarelli A, Renga B, Distrutti E, Fiorucci S: Antiatherosclerotic effect of farnesoid X receptor. Am J Physiol Heart Circ Physiol 2009, 296:H272–H281.

    Article  CAS  PubMed  Google Scholar 

  49. Bishop-Bailey D: FXR as a novel therapeutic target for vascular disease. Drug News Perspect 2004, 17:499–504.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Vanden Heuvel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanden Heuvel, J.P. Cardiovascular disease-related genes and regulation by diet. Curr Atheroscler Rep 11, 448–455 (2009). https://doi.org/10.1007/s11883-009-0067-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-009-0067-x

Keywords

Navigation