Skip to main content
Log in

Impact of circulating esterified eicosanoids and other oxylipins on endothelial function

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Eicosanoids, including epoxyeicosatrienoic acids, hydroxyeicosatetraenoic acids, and other oxylipins derived from polyunsaturated fatty acids, have emerging roles in endothelial inflammation and subsequent atherosclerosis. Unlike eicosanoids in the prostanoid series, they are known to be esterified in cell lipids such as phospholipids and triglycerides; however, our understanding of these reservoirs is in its infancy. This review focuses on recent work identifying circulating oxylipins, primarily esterified with lipoprotein lipids, and their effects on markers of endothelial dysfunction. These oxylipins are known to be released by at least one lipase (lipoprotein lipase) and to mediate increased expression of inflammatory markers in endothelial cells, which coincides with the known roles of lipoproteins in endothelial dysfunction. The implications of the lipolytic release of lipoproteinbound oxylipins for the inflammatory response, challenges to analysis of this oxylipin compartment, and the potential importance of non-arachidonatederived oxylipins are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Nicholls SJ, Hazen SL: Myeloperoxidase, modified lipoproteins, and atherogenesis. J Lipid Res 2009, 50(Suppl):S346–S351.

    Article  PubMed  Google Scholar 

  2. Buczynski MW, Dumlao DS, Dennis EA: Thematic Review Series: Proteomics. An integrated omics analysis of eicosanoid biology. J Lipid Res 2009, 50:1015–1038.

    Article  CAS  PubMed  Google Scholar 

  3. O’Donnell VB, Maskrey B, Taylor GW: Eicosanoids: generation and detection in mammalian cells. Methods Mol Biol 2009, 462:5–23.

    PubMed  Google Scholar 

  4. Zhang R, Brennan ML, Shen Z, et al.: Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J Biol Chem 2002, 277:46116–46122.

    Article  CAS  PubMed  Google Scholar 

  5. Spector AA: Arachidonic acid cytochrome P450 epoxygenase pathway. J Lipid Res 2009, 50(Suppl):S52–S56.

    Article  PubMed  Google Scholar 

  6. Newman JW, Kaysen GA, Hammock BD, Shearer GC: Proteinuria increases oxylipid concentrations in VLDL and HDL but not LDL particles in the rat. J Lipid Res 2007, 48:1792–1800.

    Article  CAS  PubMed  Google Scholar 

  7. Proudfoot JM, Barden AE, Loke WM, et al.: HDL is the major lipoprotein carrier of plasma F2-isoprostanes. J Lipid Res 2009, 50:716–722.

    Article  CAS  PubMed  Google Scholar 

  8. Spector AA, Norris AW: Action of epoxyeicosatrienoic acids on cellular function. Am J Physiol 2007, 292:C996–C1012.

    Article  CAS  Google Scholar 

  9. Lee CR, North KE, Bray MS, et al.: Genetic variation in soluble epoxide hydrolase (EPHX2) and risk of coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) study. Hum Mol Genet 2006, 15:1640–1649.

    Article  CAS  PubMed  Google Scholar 

  10. Wei Q, Doris PA, Pollizotto MV, et al.: Sequence variation in the soluble epoxide hydrolase gene and subclinical coronary atherosclerosis: interaction with cigarette smoking. Atherosclerosis 2007, 190:26–34.

    Article  CAS  PubMed  Google Scholar 

  11. Lee CR, North KE, Bray MS, et al.: CYP2J2 and CYP2C8 polymorphisms and coronary heart disease risk: the Atherosclerosis Risk in Communities (ARIC) study. Pharmacogenet Genomics 2007, 17:349–358.

    Article  CAS  PubMed  Google Scholar 

  12. Liu PY, Li YH, Chao TH, et al.: Synergistic effect of cytochrome P450 epoxygenase CYP2J2*7 polymorphism with smoking on the onset of premature myocardial infarction. Atherosclerosis 2007, 195:199–206.

    Article  CAS  PubMed  Google Scholar 

  13. Ercan B, Ayaz L, Cicek D, Tamer L: Role of CYP2C9 and CYP2C19 polymorphisms in patients with atherosclerosis. Cell Biochem Function 2008, 26:309–313.

    Article  CAS  Google Scholar 

  14. Zhang Y, Oltman CL, Lu T, et al.: EET homologs potently dilate coronary microvessels and activate BK(Ca) channels. Am J Physiol Heart Circ Physiol 2001, 280:H2430–H2440.

    CAS  PubMed  Google Scholar 

  15. Ye D, Zhang D, Oltman C, et al.: Cytochrome p-450 epoxygenase metabolites of docosahexaenoate potently dilate coronary arterioles by activating large-conductance calcium-activated potassium channels. J Pharmacol Exp Ther 2002, 303:768–776.

    Article  CAS  PubMed  Google Scholar 

  16. Ulu A, Davis BB, Tsai HJ, et al.: Soluble epoxide hydrolase inhibitors reduce the development of atherosclerosis in apolipoprotein e-knockout mouse model. J Cardiovasc Pharmacol 2008, 52:314–323.

    Article  CAS  PubMed  Google Scholar 

  17. Fang X, Hu S, Xu B, et al.: 14,15-Dihydroxyeicosatrienoic acid activates peroxisome proliferator-activated receptor-alpha. Am J Physiol Heart Circ Physiol 2006, 290:H55–H63.

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki S, Oguro A, Osada-Oka M, et al.: Epoxyeicosatrienoic acids and/or their metabolites promote hypoxic response of cells. J Pharmacol Sci 2008, 108:79–88.

    Article  CAS  PubMed  Google Scholar 

  19. Slim R, Hammock BD, Toborek M, et al.: The role of methyl-linoleic acid epoxide and diol metabolites in the amplified toxicity of linoleic acid and polychlorinated biphenyls to vascular endothelial cells. Toxicol Appl Pharmacol 2001, 171:184–193.

    Article  CAS  PubMed  Google Scholar 

  20. Yasar U, Bennet AM, Eliasson E, et al.: Allelic variants of cytochromes P450 2C modify the risk for acute myocardial infarction. Pharmacogenetics 2003, 13:715–720.

    Article  CAS  PubMed  Google Scholar 

  21. Shishehbor MH, Zhang R, Medina H, et al.: Systemic elevations of free radical oxidation products of arachidonic acid are associated with angiographic evidence of coronary artery disease. Free Radical Biol Med 2006, 41:1678–1683.

    Article  CAS  Google Scholar 

  22. Whatling C, McPheat W, Herslof M: The potential link between atherosclerosis and the 5-lipoxygenase pathway: investigational agents with new implications for the cardiovascular field. Expert Opin Invest Drugs 2007, 16:1879–1893.

    Article  CAS  Google Scholar 

  23. Patel P, Cossette C, Anumolu JR, et al.: Structural requirements for activation of the 5-oxo-6E,8Z, 11Z,14Z-eicosatetraenoic acid (5-oxo-ETE) receptor: identification of a mead acid metabolite with potent agonist activity. J Pharmacol Exper Ther 2008, 325:698–707.

    Article  CAS  Google Scholar 

  24. Wittwer J, Hersberger M: The two faces of the 15-lipoxygenase in atherosclerosis. Prostaglandins Leukotrienes Essential Fatty Acids 2007, 77:67–77.

    Article  CAS  Google Scholar 

  25. Natarajan R, Nadler JL: Lipid inflammatory mediators in diabetic vascular disease. Arterioscler Thromb Vasc Biol 2004, 24:1542–1548.

    Article  CAS  PubMed  Google Scholar 

  26. Barlic J, Murphy PM: An oxidized lipid-peroxisome proliferator-activated receptor gamma-chemokine pathway in the regulation of macrophage-vascular smooth muscle cell adhesion. Trends Cardiovasc Med 2007, 17:269–274.

    Article  CAS  PubMed  Google Scholar 

  27. Stenson WF, Parker CW: 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid, a chemotactic fatty acid, is incorporated into neutrophil phospholipids and triglyceride. Prostaglandins 1979, 18:285–292.

    Article  CAS  PubMed  Google Scholar 

  28. Fang X, Weintraub NL, Stoll LL, Spector AA: Epoxyeicosatrienoic acids increase intracellular calcium concentration in vascular smooth muscle cells. Hypertension 1999, 34:1242–1246.

    CAS  PubMed  Google Scholar 

  29. Seubert JM, Zeldin DC, Nithipatikom K, Gross GJ: Role of epoxyeicosatrienoic acids in protecting the myocardium following ischemia/reperfusion injury. Prostaglandins Other Lipid Mediators 2007, 82:50–59.

    Article  CAS  PubMed  Google Scholar 

  30. Spector AA, Fang X, Snyder GD, Weintraub NL: Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Progress Lipid Res 2004, 43:55–90.

    Article  CAS  Google Scholar 

  31. Weintraub NL, Fang X, Kaduce TL, et al.: Potentiation of endothelium-dependent relaxation by epoxyeicosatrienoic acids. Circ Res 1997, 81:258–267.

    CAS  PubMed  Google Scholar 

  32. Zhu Y, Schieber EB, McGiff JC, Balazy M: Identification of arachidonate P-450 metabolites in human platelet phospholipids. Hypertension 1995, 25:854–859.

    CAS  PubMed  Google Scholar 

  33. Jiang H, Zhu AG, Mamczur M, et al.: Hydrolysis of cis- and trans-epoxyeicosatrienoic acids by rat red blood cells. J Pharmacol Exper Ther 2008, 326:330–337.

    Article  CAS  Google Scholar 

  34. Karara A, Wei S, Spady D, et al.: Arachidonic acid epoxygenase: structural characterization and quantification of epoxyeicosatrienoates in plasma. Biochem Biophys Res Commun 1992, 182:1320–1325.

    Article  CAS  PubMed  Google Scholar 

  35. Shearer GC, Newman JW: Lipoprotein lipase releases esterified oxylipins from very low-density lipoproteins. Prostaglandins Leukotrienes Essential Fatty Acids 2008, 79:215–222.

    Article  CAS  Google Scholar 

  36. Eiselein L, Wilson DW, Lame MW, Rutledge JC: Lipolysis products from triglyceride-rich lipoproteins increase endothelial permeability, perturb zonula occludens-1 and F-actin, and induce apoptosis. Am J Physiol Heart Circ Physiol 2007, 292:H2745–H2753.

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, Sapuri-Butti AR, Aung HH, et al.: Triglyceride-rich lipoprotein lipolysis increases aggregation of endothelial cell membrane microdomains and produces reactive oxygen species. Am J Physiol Heart Circ Physiol 2008, 295:H237–H244.

    Article  CAS  PubMed  Google Scholar 

  38. Wang L, Gill R, Pedersen TL, et al.: Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation. J Lipid Res 2009, 50:204–213.

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi M, Hiyama Y, Yokoyama M, et al.: In vivo arterial lipoprotein lipase expression augments inflammatory responses and impairs vascular dilatation. Arterioscler Thromb Vasc Biol 2008, 28:455–462.

    Article  CAS  PubMed  Google Scholar 

  40. Coleman JD, Prabhu KS, Thompson JT, et al.: The oxidative stress mediator 4-hydroxynonenal is an intracellular agonist of the nuclear receptor peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta). Free Radical Biol Med 2007, 42:1155–1164.

    Article  CAS  Google Scholar 

  41. Badellino KO, Wolfe ML, Reilly MP, Rader DJ: Endothelial lipase is increased in vivo by inflammation in humans. Circulation 2008, 117:678–685.

    Article  CAS  PubMed  Google Scholar 

  42. McCoy MG, Sun GS, Marchadier D, et al.: Characterization of the lipolytic activity of endothelial lipase. J Lipid Res 2002, 43:921–929.

    CAS  PubMed  Google Scholar 

  43. Ahmed W, Orasanu G, Nehra V, et al.: High-density lipoprotein hydrolysis by endothelial lipase activates PPARalpha: a candidate mechanism for high-density lipoprotein-mediated repression of leukocyte adhesion. Circ Res 2006, 98:490–498.

    Article  CAS  PubMed  Google Scholar 

  44. Alipour A, Elte JW, van Zaanen HC, et al.: Novel aspects of postprandial lipemia in relation to atherosclerosis. Atheroscler Suppl 2008, 9:39–44.

    Article  CAS  PubMed  Google Scholar 

  45. Esteve E, Ricart W, Fernandez-Real JM: Dyslipidemia and inflammation: an evolutionary conserved mechanism. Clin Nutr (Edinburgh, Scotland) 2005, 24:16–31.

    CAS  Google Scholar 

  46. de Goma EM, deGoma RL, Rader DJ: Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J Am Coll Cardiol 2008, 51:2199–2211.

    Article  Google Scholar 

  47. Ansell BJ, Navab M, Hama S, et al.: Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation 2003, 108:2751–2756.

    Article  CAS  PubMed  Google Scholar 

  48. Bisoendial RJ, Hovingh GK, Levels JH, et al.: Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated low high-density lipoprotein. Circulation 2003, 107:2944–2948.

    Article  PubMed  Google Scholar 

  49. Mizutani T, Masuda M, Nakai E, et al.: Genuine functions of P-glycoprotein (ABCB1). Curr Drug Metab 2008, 9:167–174.

    Article  CAS  PubMed  Google Scholar 

  50. Shearer GC, Pottala JV, Spertus JA, Harris WS: Red blood cell fatty acid patterns and acute coronary syndrome. PLoS ONE 2009, 4:e5444.

    Article  PubMed  Google Scholar 

  51. Harmon SD, Fang X, Kaduce TL, et al.: Oxygenation of omega-3 fatty acids by human cytochrome P450 4F3B: effect on 20-hydroxyeicosatetraenoic acid production. Prostaglandins Leukotrienes Essential Fatty Acids 2006, 75:169–177.

    Article  CAS  Google Scholar 

  52. Lemley KV: An introduction to biomarkers: applications to chronic kidney disease. Pediatr Nephrol (Berlin) 2007, 22:1849–1859.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory C. Shearer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shearer, G.C., Newman, J.W. Impact of circulating esterified eicosanoids and other oxylipins on endothelial function. Curr Atheroscler Rep 11, 403–410 (2009). https://doi.org/10.1007/s11883-009-0061-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-009-0061-3

Keywords

Navigation