Skip to main content

Advertisement

Log in

Experimental models investigating the inflammatory basis of atherosclerosis

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Inflammation is considered an important aspect in the development of atherosclerosis. Genetic manipulations of animal models susceptible to atherosclerosis have unraveled the contribution of various inflammatory pathways implicated in the development of atherosclerosis. These inflammatory pathways not only lead to the recruitment and entry of inflammatory cells into the arterial wall, they also modify the morphology and composition of atherosclerotic plaques. Certain inflammatory pathways, such as P-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, appear to play an important role in lesion initiation, whereas others, such as interleukin-10 and CD40/CD40 ligand, seem to contribute to lesion progression and morphologic changes. An understanding of these pathways will allow the development of new strategies in the management of atherosclerosis. This review provides a roadmap for better utilization of these models in atherosclerosis research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Lawn R, Wade D, Hammer R, et al.: Atherogenesis in transgenic mice expressing human apolipoprotein(a). Nature 1992, 360:670–672.

    Article  PubMed  CAS  Google Scholar 

  2. Tenger C, Zhou X: Apolipoprotein E modulates immune activation by acting on the antigen-presenting cell. Immunology 2003, 109:392–397.

    Article  PubMed  CAS  Google Scholar 

  3. Calara F, Silvestre M, Casanada F, et al.: Spontaneous plaque rupture and secondary thrombosis in apolipoprotein E-deficient and LDL receptor-deficient mice. J Pathol 2001, 195:257–263.

    Article  PubMed  CAS  Google Scholar 

  4. Masucci-Magoulas L, Goldberg I, Bisgaier C, et al.: A mouse model with features of familial combined hyperlipidemia. Science 1997, 275:391–394.

    Article  PubMed  CAS  Google Scholar 

  5. Bannykh S, Witztum J, Bergmark C: Mechanical aortic injury in apoE-deficient mice as a model for development of atherosclerosis: demonstration of leukocyte rolling early after injury. Ultrastructural Pathol 2002, 26:251–260.

    Article  Google Scholar 

  6. von der Thüsen J, van Berkel T, Biessen E: Induction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. Circulation 2001, 103:1164–1170.

    PubMed  Google Scholar 

  7. Grimsditch DC, Penfold S, Latcham J, et al.: C3H apoE(-/-) mice have less atherosclerosis than C57BL apoE(-/-) mice despite having a more atherogenic serum lipid profile. Atherosclerosis 2000, 151:389–397.

    Article  PubMed  CAS  Google Scholar 

  8. Shi W, Wang NJ, Shih DM, et al.: Determinants of atherosclerosis susceptibility in the C3H and C57BL/6 mouse model: evidence for involvement of endothelial cells but not blood cells or cholesterol metabolism. Circ Res 2000, 86:1078–1084.

    PubMed  CAS  Google Scholar 

  9. Tabibiazar R, Wagner RA, Spin JM, et al.: Mouse strain-specific differences in vascular wall gene expression and their relationship to vascular disease. Arterioscler Thromb 2005, 25:302–308.

    Article  CAS  Google Scholar 

  10. Johnson R, Chapman S, Dong Z, et al.: Absence of P-selectin delays fatty streak formation in mice. J Clin Invest 1997, 99:1037–1043.

    Article  PubMed  CAS  Google Scholar 

  11. Dong Z, Brown A, Wagner D: Prominent role of P-selectin in the development of advanced atherosclerosis in ApoE-deficient mice. Circulation 2000, 101:2290–2295.

    PubMed  CAS  Google Scholar 

  12. Nageh M, Sandberg E, Marotti K, et al.: Deficiency of inflammatory cell adhesion molecules protects against atherosclerosis in mice. Arterioscler Thromb Vasc Biol 1997, 17:1517–1520.

    PubMed  CAS  Google Scholar 

  13. Molenaar T, Twisk J, de Haas S, et al.: P-selectin as a candidate target in atherosclerosis. Biochem Pharmacol 2003, 66:859–866.

    Article  PubMed  CAS  Google Scholar 

  14. Kumar A, Hoover J, Simmons C, et al.: Remodeling and neointimal formation in the carotid artery of normal and P-selectin-deficient mice. Circulation 1997, 96:4333–4342.

    PubMed  CAS  Google Scholar 

  15. Manka D, Collins R, Ley K, et al.: Absence of P-selectin, but not intercellular adhesion molecule-1, attenuates neointimal growth after arterial injury in apolipoprotein e-deficient mice. Circulation 2001, 103:1000–1005.

    PubMed  CAS  Google Scholar 

  16. Hayashi S, Watanabe N, Nakazawa K, et al.: Roles of P-selectin in inflammation, neointimal formation, and vascular remodeling in balloon-injured rat carotid arteries. Circulation 2000, 102:1710–1717.

    PubMed  CAS  Google Scholar 

  17. Molenaar T, Appeldoorn C, de Haas S, et al.: Specific inhibition of P-selectin-mediated cell adhesion by phage display-derived peptide antagonists. Blood 2002, 100:3570–3577.

    Article  PubMed  CAS  Google Scholar 

  18. Iiyama K, Hajra L, Iiyama M, et al.: Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res 1999, 85:199–207.

    PubMed  CAS  Google Scholar 

  19. Collins R, Velji R, Guevara N, et al.: P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med 2000, 191:189–194.

    Article  PubMed  CAS  Google Scholar 

  20. Patel S, Thiagarajan R, Willerson J, Yeh E: Inhibition of alpha4 integrin and ICAM-1 markedly attenuate macrophage homing to atherosclerotic plaques in ApoE-deficient mice. Circulation 1998, 97:75–81.

    PubMed  CAS  Google Scholar 

  21. Bourdillon M, Poston R, Covacho C, et al.: ICAM-1 deficiency reduces atherosclerotic lesions in double-knockout mice (ApoE(-/-)/ICAM-1(-/-)) fed a fat or a chow diet. Arterioscler Thromb 2000, 20:2630–2635.

    CAS  Google Scholar 

  22. Cybulsky M, Iiyama K, Li H, et al.: A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 2001, 107:1255–1262.

    Article  PubMed  CAS  Google Scholar 

  23. Elices M, Osborn L, Takada Y, et al.: VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 1990, 60:577–584.

    Article  PubMed  CAS  Google Scholar 

  24. Li H, Cybulsky M, Gimbrone M, Libby P: An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb 1993, 13:197–204.

    PubMed  Google Scholar 

  25. Sakai A, Kume N, Nishi E, et al.: P-selectin and vascular cell adhesion molecule-1 are focally expressed in aortas of hypercholesterolemic rabbits before intimal accumulation of macrophages and T lymphocytes. Arterioscler Thromb Vasc Biol 1997, 17:310–316.

    PubMed  CAS  Google Scholar 

  26. Nakashima Y, Raines E, Plump A, et al.: Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol 1998, 18:842–851.

    PubMed  CAS  Google Scholar 

  27. Gurtner G, Davis V, Li H, et al.: Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev 1995, 9:1–14.

    Article  PubMed  CAS  Google Scholar 

  28. Koni P, Joshi S, Temann U, et al.: Conditional vascular cell adhesion molecule 1 deletion in mice: impaired lymphocyte migration to bone marrow. J Exp Med 2001, 193:741–754.

    Article  PubMed  CAS  Google Scholar 

  29. Dansky H, Barlow C, Lominska C, et al.: Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule-1 gene dosage. Arterioscler Thromb 2001, 21:1662–1667.

    Article  CAS  Google Scholar 

  30. Shih P, Brennan M, Vora D, et al.: Blocking very late antigen-4 integrin decreases leukocyte entry and fatty streak formation in mice fed an atherogenic diet. Circ Res 1999, 84:345–351.

    PubMed  CAS  Google Scholar 

  31. Bavendiek U, Zirlik A, LaClair S, et al.: Atherogenesis in mice does not require CD40 ligand from bone marrow-derived cells. Arterioscler Thromb 2005, 25:1244–1249.

    Article  CAS  Google Scholar 

  32. Mach F, Schönbeck U, Sukhova G, et al.: Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998, 394:200–203.

    Article  PubMed  CAS  Google Scholar 

  33. Schönbeck U, Sukhova G, Shimizu K, et al.: Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc Natl Acad Sci U S A 2000, 97:7458–7463.

    Article  PubMed  Google Scholar 

  34. Lutgens E, Gorelik L, Daemen M, et al.: Requirement for CD154 in the progression of atherosclerosis. Nat Med 1999, 5:1313–1316.

    Article  PubMed  CAS  Google Scholar 

  35. Qiao J, Tripathi J, Mishra N, et al.: Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am J Pathol 1997, 150:1687–1699.

    PubMed  CAS  Google Scholar 

  36. Smith J, Trogan E, Ginsberg M, et al.: Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci U S A 1995, 92:8264–8268.

    Article  PubMed  CAS  Google Scholar 

  37. Boring L, Gosling J, Chensue S, et al.: Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest 1997, 100:2552–2561.

    Article  PubMed  CAS  Google Scholar 

  38. Lu B, Rutledge B, Gu L, et al.: Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 1998, 187:601–608.

    Article  PubMed  CAS  Google Scholar 

  39. Takeya M, Yoshimura T, Leonard E, Takahashi K: Detection of monocyte chemoattractant protein-1 in human atherosclerotic lesions by an anti-monocyte chemoattractant protein-1 monoclonal antibody. Hum Pathol 1993, 24:534–539.

    Article  PubMed  CAS  Google Scholar 

  40. Clinton S, Libby P: Cytokines and growth factors in atherogenesis. Arch Pathol Lab Med 1992, 116:1292–1300.

    PubMed  CAS  Google Scholar 

  41. Yu X, Dluz S, Graves D, et al.: elevated expression of monocyte chemoattractant protein 1 by vascular smooth muscle cells in hypercholesterolemic primates. Proc Natl Acad Sci U S A 1992, 89:6953–6957.

    Article  PubMed  CAS  Google Scholar 

  42. Kuziel WA, Morgan SJ, Dawson TC, et al.: Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci U S A 1997, 94:12053–12058.

    Article  PubMed  CAS  Google Scholar 

  43. Reckless J, Rubin E, Verstuyft J, et al.: Monocyte chemoattractant protein-1 but not tumor necrosis factor-alpha is correlated with monocyte infiltration in mouse lipid lesions. Circulation 1999, 99:2310–2316.

    PubMed  CAS  Google Scholar 

  44. Gu L, Okada Y, Clinton S, et al.: Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 1998, 2:275–281.

    Article  PubMed  CAS  Google Scholar 

  45. Gosling J, Slaymaker S, Gu L, et al.: MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Invest 1999, 103:773–778.

    Article  PubMed  CAS  Google Scholar 

  46. Dawson T, Kuziel W, Osahar T, Maeda N: Absence of CC chemokine receptor-2 reduces atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 1999, 143:205–211.

    Article  PubMed  CAS  Google Scholar 

  47. Boring L, Gosling J, Cleary M, Charo I: Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998, 394:894–897.

    Article  PubMed  CAS  Google Scholar 

  48. Namiki M, Kawashima S, Yamashita T, et al.: Local over-expression of monocyte chemoattractant protein-1 at vessel wall induces infiltration of macrophages and formation of atherosclerotic lesion: synergism with hypercholesterolemia. Arterioscler Thromb 2002, 22:115–120.

    Article  CAS  Google Scholar 

  49. Ni W, Egashira K, Kitamoto S, et al.: New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation 2001, 103:2096–2101.

    PubMed  CAS  Google Scholar 

  50. Inoue, S, Egashira K, Ni W, et al.: Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation 2002, 106:2700–2706.

    Article  PubMed  CAS  Google Scholar 

  51. Usui M, Egashira K, Ohtani K, et al.: Anti-monocyte chemoattractant protein-1 gene therapy inhibits restenotic changes (neointimal hyperplasia) after balloon injury in rats and monkeys. FASEB J 2002, 16:1838–1840.

    PubMed  CAS  Google Scholar 

  52. Kuziel W, Dawson T, Quinones M, et al.: CCR5 deficiency is not protective in the early stages of atherogenesis in apoE knockout mice. Atherosclerosis 2003, 167:25–32.

    Article  PubMed  CAS  Google Scholar 

  53. Braunersreuther V, Zernecke A, Arnaud C, et al.: CCR5 but not CCR1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2007, 27:373–379.

    Article  PubMed  CAS  Google Scholar 

  54. Zernecke A, Liehn E, Gao J, et al.: Deficiency in CCR5 but not CCR1 protects against neointima formation in atherosclerosis-prone mice: involvement of IL-10. Blood 2006, 107:4240–4243.

    Article  PubMed  CAS  Google Scholar 

  55. van Wanrooij EJ, Happe H, Hauer AD, et al.: HIV entry inhibitor TAK-779 attenuates atherogenesis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2005, 25:2642–2647.

    Article  PubMed  Google Scholar 

  56. Wilcox JN, Nelken NA, Coughlin SR, et al.: Local expression of inflammatory cytokines in human atherosclerotic plaques. J Atheroscler Thromb 1994, 1(Suppl 1):S10–S13.

    PubMed  Google Scholar 

  57. Haley KJ, Lilly CM, Yang JH, et al.: Overexpression of eotaxin and the CCR3 receptor in human atherosclerosis: using genomic technology to identify a potential novel pathway of vascular inflammation. Circulation 2000, 102:2185–2189.

    PubMed  CAS  Google Scholar 

  58. Inoue T, Komoda H, Nonaka M, et al.: Interleukin-8 as an independent predictor of long-term clinical outcome in patients with coronary artery disease. Int J Cardiol 2007 [Epub ahead of print].

  59. Boisvert W, Santiago R, Curtiss L, Terkeltaub R: A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J Clin Invest 1998, 101:353–363.

    Article  PubMed  CAS  Google Scholar 

  60. Boisvert W, Rose D, Johnson K, et al.: Up-regulated expression of the CXCR2 ligand KC/GRO-alpha in atherosclerotic lesions plays a central role in macrophage accumulation and lesion progression. Am J Pathol 2006, 168:1385–1395.

    Article  PubMed  CAS  Google Scholar 

  61. von der Thüsen J, Kuiper J, van Berkel T, Biessen E: Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol Rev 2003, 55:133–166.

    Article  PubMed  Google Scholar 

  62. Caligiuri G, Rudling M, Ollivier V, et al.: Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol Med 2003, 9:10–17.

    PubMed  CAS  Google Scholar 

  63. Pinderski Oslund L, Hedrick C, Olvera T, et al.: Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler Thromb Vasc Biol 1999, 19:2847–2853.

    PubMed  CAS  Google Scholar 

  64. Pinderski L, Fischbein M, Subbanagounder G, et al.: Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes. Circ Res 2002, 90:1064–1071.

    Article  PubMed  CAS  Google Scholar 

  65. Von Der Thüsen J, Kuiper J, Fekkes M, et al.: Attenuation of atherogenesis by systemic and local adenovirus-mediated gene transfer of interleukin-10 in LDLr-/-mice. FASEB J 2001, 15:2730–2732.

    Google Scholar 

  66. Whitman S, Ravisankar P, Elam H, Daugherty A: Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E-/-mice. Am J Pathol 2000, 157:1819–1824.

    PubMed  CAS  Google Scholar 

  67. Tellides G, Tereb D, Kirkiles-Smith N, et al.: Interferon-gamma elicits arteriosclerosis in the absence of leukocytes. Nature 2000, 403:207–211.

    Article  PubMed  CAS  Google Scholar 

  68. Gupta S, Pablo A, Jiang X, et al.: IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 1997, 99:2752–2761.

    Article  PubMed  CAS  Google Scholar 

  69. Whitman S, Ravisankar P, Daugherty A: IFN-gamma deficiency exerts gender-specific effects on atherogenesis in apolipoprotein E-/-mice. J Interferon Cytokine Res 2002, 22:661–670.

    Article  PubMed  CAS  Google Scholar 

  70. Koga M, Kai H, Yasukawa H, et al.: Inhibition of progression and stabilization of plaques by postnatal interferon-gamma function blocking in ApoE-knockout mice. Circ Res 2007, 101:348–356.

    Article  PubMed  CAS  Google Scholar 

  71. Davenport P, Tipping PG: The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol 2003, 163:1117–1125.

    PubMed  CAS  Google Scholar 

  72. Lee T, Yen H, Pan C, Chau L: The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 1999, 19:734–742.

    PubMed  CAS  Google Scholar 

  73. Hauer A, Uyttenhove C, de Vos P, et al.: Blockade of interleukin-12 function by protein vaccination attenuates atherosclerosis. Circulation 2005, 112:1054–1062.

    Article  PubMed  CAS  Google Scholar 

  74. Whitman S, Ravisankar P, Daugherty A: Interleukin-18 enhances atherosclerosis in apolipoprotein E(-/-) mice through release of interferon-gamma. Circ Res 2002, 90:E34–E38.

    Article  PubMed  CAS  Google Scholar 

  75. Mallat Z, Corbaz A, Scoazec A, et al.: Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res 2001, 89:E41–E45.

    Article  PubMed  CAS  Google Scholar 

  76. George J, Mulkins M, Shaish A, et al.: Interleukin (IL)-4 deficiency does not influence fatty streak formation in C57BL/6 mice. Atherosclerosis 2000, 153:403–411.

    Article  PubMed  CAS  Google Scholar 

  77. Huber S, Sakkinen P, Conze D, et al.: Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler Thromb Vasc Biol 1999, 19:2364–2367.

    PubMed  CAS  Google Scholar 

  78. Bazan J, Bacon K, Hardiman G, et al.: A new class of membrane-bound chemokine with a CX3C motif. Nature 1997, 385:640–644.

    Article  PubMed  CAS  Google Scholar 

  79. Lucas A, Bursill C, Guzik T, et al.: Smooth muscle cells in human atherosclerotic plaques express the fractalkine receptor CX3CR1 and undergo chemotaxis to the CX3C chemokine fractalkine (CX3CL1). Circulation 2003, 108:2498–2504.

    Article  PubMed  CAS  Google Scholar 

  80. Wong B, Wong D, McManus B: Characterization of fractalkine (CX3CL1) and CX3CR1 in human coronary arteries with native atherosclerosis, diabetes mellitus, and transplant vascular disease. Cardiovasc Pathol 2002, 11:332–338.

    Article  PubMed  CAS  Google Scholar 

  81. Teupser D, Pavlides S, Tan M, et al.: Major reduction of atherosclerosis in fractalkine (CX3CL1)-deficient mice is at the brachiocephalic artery, not the aortic root. Proc Natl Acad Sci U S A 2004, 101:17795–17800.

    Article  PubMed  CAS  Google Scholar 

  82. Combadière C, Potteaux S, Gao J, et al.: Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 2003, 107:1009–1016.

    Article  PubMed  Google Scholar 

  83. Lesnik P, Haskell C, Charo I: Decreased atherosclerosis in CX3CR1-/-mice reveals a role for fractalkine in atherogenesis. J Clin Invest 2003, 111:333–340.

    PubMed  CAS  Google Scholar 

  84. Berliner J, Navab M, Fogelman A, et al.: Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 1995, 91:2488–2496.

    PubMed  CAS  Google Scholar 

  85. Schober A, Zernecke A, Liehn E, et al.: Crucial role of the CCL2/CCR2 axis in neointimal hyperplasia after arterial injury in hyperlipidemic mice involves early monocyte recruitment and CCL2 presentation on platelets. Circ Res 2004, 95:1125–1133.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Kee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soliman, A., Kee, P. Experimental models investigating the inflammatory basis of atherosclerosis. Curr Atheroscler Rep 10, 260–271 (2008). https://doi.org/10.1007/s11883-008-0040-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-008-0040-0

Keywords

Navigation