Skip to main content

Advertisement

Log in

Should hyperhomocysteinemia be treated in patients with atherosclerotic disease?

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Numerous retrospective and prospective observational studies support an association between elevated homocysteine and increased risk for myocardial infarction, stroke, and peripheral vascular disease. Although folic acid therapy substantially reduces homocysteine levels, recent large, randomized controlled trials failed to translate folic acid-induced homocysteine reduction into clinical benefit for the secondary prevention of cardiovascular events. These studies are compelling and have generated some newfound skepticism regarding a clinical role for folic acid therapy. Because these intervention trials have been limited to patients with mild hyperhomocysteinemia, the results of the trials imply that folic acid therapy may be best suited for individuals with more robustly elevated homocysteine levels. Furthermore, the potential benefit of folic acid therapy for primary prevention in individuals at low-or intermediate-risk for atherothrombotic disease has not been studied to date. Thus, at this time, folic acid therapy for borderline or mild hyperhomocysteinemia is not recommended. However, the role of folic acid therapy in patients with intermediate or severe hyperhomocysteinemia, or for primary prevention of cardiovascular diseases, remains unresolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Deitcher SR, Jaff MR: Pharmacologic and clinical characteristics of thrombolytic agents. Rev Cardiovasc Med 2002, 3(Suppl 2):S25–33.

    PubMed  Google Scholar 

  2. Yusuf S, Reddy S, Ounpuu S, Anand S: Global burden of cardiovascular disease, I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 2001, 104:2746–2753.

    PubMed  CAS  Google Scholar 

  3. Coronary Drug Project Research Group: Natural history of myocardial infarction in the coronary drug project: long term implications of serum lipid levels. Am J Cardiol 1978, 30:489–498.

    Google Scholar 

  4. The Lipid Research Clinics Coronary Primary Prevention Trial results. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA 1984, 251:365–374.

  5. McCully KS: Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969, 56:111–128.

    PubMed  CAS  Google Scholar 

  6. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG: A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 1995, 274:1049–1057.

    Article  PubMed  CAS  Google Scholar 

  7. Lonn E, Yusuf S, Arnold MJ, et al.: Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 2006, 354:1567–1577.

    Article  PubMed  CAS  Google Scholar 

  8. Bønna KH, Njolstad I, Ueland PM, et al.: Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med 2006, 354:1578–1588.

    Article  Google Scholar 

  9. Toole JF, Malinow MR, Chambless LE, et al.: Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the vitamin intervention for stroke prevention (VISP) randomized controlled trial. JAMA 2004, 291:565–575.

    Article  PubMed  CAS  Google Scholar 

  10. Champe P, Harvey R: Amino acids: metabolism of carbon skeletons. In Lippincott’s Illustrated Reviews: Biochemistry, 2nd edition. Edited by Champe P, Harvey R. Philadelphia: JB Lippincott; 1987:248–249.

    Google Scholar 

  11. Finkelstein JD: Methionine metabolism in mammals. J Nutr Biochem 1990, 1:228–237.

    Article  PubMed  CAS  Google Scholar 

  12. Malinow R, Bostom AG, Krauss RM: Homocyst(e)ine, diet, and cardiovascular diseases: a statement for healthcare professionals from the Nutrition Committee, American Heart Association. Circulation 1999, 99:178–182.

    PubMed  CAS  Google Scholar 

  13. Jacques PF, Bostom AG, Williams RR, et al.: Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 1996, 93:7–9.

    PubMed  CAS  Google Scholar 

  14. Brattstrom L, Wilcken DE, Ohrvik J, et al.: Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation 1998, 98:2520–2256.

    PubMed  CAS  Google Scholar 

  15. Kolling K, Ndrepepa G, Koch W, et al.: Methylenetetrahydrofolate reductase gene C677T and A1298C polymorphisms, plasma homocysteine, folate, and vitamin B12 levels and the extent of coronary artery disease. Am J Cardiol 2004, 93:1201–1206.

    Article  PubMed  CAS  Google Scholar 

  16. Garovic-Kocic V, Rosenblatt DS: Methionine auxotrophy in inborn errors of cobalamin metabolism. Clin Invest Med 1995, 15:395–400.

    Google Scholar 

  17. Kraus JP, Kozich V: Cystathionine b-synthase and its deficiency. In Homocysteine in Health and Disease. Edited by Carmel R, Jacobsen DW. New York: Cambridge University Press; 2001:223–244.

    Google Scholar 

  18. Watanabe M, Osada J, Aratani Y, et al.: Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci U S A 1995, 92:1585–1589.

    Article  PubMed  CAS  Google Scholar 

  19. Eberhardt RT, Fogione MA, Cap A, et al.: Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia. J Clin Invest 2000, 106:483–491.

    PubMed  CAS  Google Scholar 

  20. Ghandour H, Chen Z, Selhub J, et al.: Mice deficient in methylenetetrahydrofolate reductase exhibit tissue-specific distribution of folates. J Nutr 2004, 134:2975–2980.

    PubMed  CAS  Google Scholar 

  21. Chen Z, Karaplis AC, Ackerman SL, et al.: Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 2001, 10:433–443.

    Article  PubMed  CAS  Google Scholar 

  22. Maron BA, Loscalzo J: Homocysteine. Clin Lab Med 2006, 26:591–609.

    Article  PubMed  Google Scholar 

  23. Tropodi A, Chantarangkul V, Lombardi R, et al.: Multicenter study of homocysteine measurement—performance characteristics of different methods, influence of standards on interlaboratory agreement of results. Thromb Haemost 2002, 87:921–922.

    Google Scholar 

  24. Mourvaki E, Ferrante F, Chirarduzzi A, et al.: Performance comparison of three assay methods used in fasting and postmethionine load plasma homocysteine determinations from patients with vascular disease. Am J Clin Pathol 2005, 124:675–681.

    Article  PubMed  CAS  Google Scholar 

  25. Foley RN, Parfrey PS, Sarnak MJ: Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol 1998, 9(Suppl 12):16–23.

    Google Scholar 

  26. Refsum H, Smith D, Ueland P, et al.: Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem 2004, 50:3–32.

    Article  PubMed  CAS  Google Scholar 

  27. Weiss N, Keller C, Hoffmann U, Loscalzo J: Endothelial dysfunction and atherothrombosis in mild hyperhomocysteinemia. Vasc Med 2003, 7:227–239.

    Article  Google Scholar 

  28. Libby P, Ridker PM: Inflammation and atherothrombosis from population biology and bench research to clinical practice. J Am Coll Cardiol 2006, 7:48(Suppl 9):A33–46.

    Article  CAS  Google Scholar 

  29. Libby P: Inflammation in atherosclerosis. Nature 2002, 420:868–874.

    Article  PubMed  CAS  Google Scholar 

  30. Inoue S, Egashira K, Ni W, et al.: Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation 2002, 19:2700–2706.

    Article  CAS  Google Scholar 

  31. Xu XH, Shah PK, Faure E, et al.: Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 2001, 104:3103–3108.

    PubMed  CAS  Google Scholar 

  32. Zmijewski JW, Moellering DR, Le Goffe C, et al.: Oxidized LDL induces mitochondrially associated reactive oxygen/nitrogen species formation in endothelial cells. Am J Physiol Heart Circ Physiol 2005, 289:H852–861.

    Article  PubMed  CAS  Google Scholar 

  33. Peng HB, Libby P, Liao JK: Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J Biol Chem 1995, 270:14214–14219.

    Article  PubMed  CAS  Google Scholar 

  34. Loscalzo J: Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res 2001, 88:756–762.

    PubMed  CAS  Google Scholar 

  35. de Nigris F, Lerman LO, Ignarro SW, et al.: Beneficial effects of antioxidants and L-arginine on oxidation-sensitive gene expression and endothelial NO synthase activity at sites of disturbed shear stress. Proc Natl Acad Sci U S A 2003, 100:1420–1425.

    Article  PubMed  CAS  Google Scholar 

  36. Welch GN, Upchurch GR, Farivar RS, et al.: Homocysteineinduced nitric oxide production in vascular-smooth muscle cells by NF-kB-dependent transcriptional activation of Nos2. Proc Assoc Am Phys 1998, 110:22–31.

    PubMed  CAS  Google Scholar 

  37. Loscalzo J: The oxidant stress of hyperhomocyst(e)inemia. J Clin Invest 1996, 98:5–7.

    Article  PubMed  CAS  Google Scholar 

  38. Handy DE, Zhang Y, Loscalzo J: Homocysteine down-regulates cellular glutathione peroxidase (GPx1) by decreasing translation. J Biol Chem 2005, 280:15518–15525.

    Article  PubMed  CAS  Google Scholar 

  39. Weiss N, Zhang YY, Heydrick S, et al.: Overexpression of cellular glutathione peroxidase rescues homocyst(e)ineinduced endothelial dysfunction. Proc Natl Acad Sci U S A 2001, 98:12503–12508.

    Article  PubMed  CAS  Google Scholar 

  40. Bellamy MF, McDowell IF, Ramsey MW, et al.: Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults. Circulation 1998, 98:1848–1852.

    PubMed  CAS  Google Scholar 

  41. Zhou J, Werstuck GH, Lhotak S, et al.: Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice. Circulation 2004, 110:207–213.

    Article  PubMed  CAS  Google Scholar 

  42. Carmel R: Folate deficiency. In Homocysteine in Health and Disease. Edited by Carmel R, Jacobsen DW. New York: Cambridge University Press; 2001:271–288.

    Google Scholar 

  43. Babior BM, Bunn FH: Meagaloblastic anemias. In Harrison’s Principles of Internal Medicine, 16th edition. Edited by Longo DL. New York: McGraw-Hill Press; 2005:601–607.

    Google Scholar 

  44. Hiltunen MO, Yia-Herttuala S: DNA methylation, smooth muscle cells, and atherogenesis. Arterioscler Thromb Vasc Biol 2003, 23:1750–1753.

    Article  PubMed  CAS  Google Scholar 

  45. Loscalzo J: Homocysteine trials-clear outcomes for complex reasons. N Engl J Med 2006, 354:1629–1632.

    Article  PubMed  CAS  Google Scholar 

  46. Jacques PF, Selhub J, Bostom AG, et al.: The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 1999, 340:1449–1454.

    Article  PubMed  CAS  Google Scholar 

  47. MRC Vitamin Study Research Group: Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 1991, 338:131–137.

    Article  Google Scholar 

  48. Refsum H, Ueland PM, Nygård O, Vollset SE: Homocysteine and cardiovascular disease. Annu Rev Med 1998, 49:31–62.

    Article  PubMed  CAS  Google Scholar 

  49. Graham IM, Daly LE, Refsum HM, et al.: Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA 1997, 277:1775–1781.

    Article  PubMed  CAS  Google Scholar 

  50. Nygård O, Norderhaug JE, Refsum H, et al.: Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997, 337:230–236.

    Article  PubMed  Google Scholar 

  51. Wang TJ, Gona P, Larson M, et al.: Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med 2006, 355:2631–2639.

    Article  PubMed  CAS  Google Scholar 

  52. Homocysteine Studies Collaboration: Homocysteine and risk of ischemic heart disease and stroke; a meta-analysis. JAMA 2002, 288:2015–2022.

    Article  Google Scholar 

  53. Wald DS, Law M, Morris JK: Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 2002, 325:1202–1209.

    Article  PubMed  Google Scholar 

  54. Schynder G, Roffi M, Pin R, et al.: Decreased rate of coronary restenosis after lowering of plasma homocysteine levels. N Engl J Med 2001, 345:1593–1600.

    Article  Google Scholar 

  55. Schnyder G, Roffi M, Flammer Y, et al.: Effect of homocysteine-lowering therapy on restenosis after percutaneous coronary intervention for narrowings in small coronary arteries. Am J Cardiol 2003, 91:1265–1269.

    Article  PubMed  CAS  Google Scholar 

  56. Lange H, Surapranata H, De Luca G, et al.: Folate therapy and in-stent restenosis after coronary stenting. N Engl J Med 2004, 350:2673–2681.

    Article  PubMed  CAS  Google Scholar 

  57. Kaul S, Zadeh AA, Shah PK: Homocysteine hypothesis for atherothrombotic cardiovascular disease, not validated. J Am Coll Cardiol 2006, 48:914–923.

    Article  PubMed  CAS  Google Scholar 

  58. Bazzano LA, Renolds K, Holder KN, He J: Effect of folic acid supplementation on risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. JAMA 2006, 296:2720–2726.

    Article  PubMed  CAS  Google Scholar 

  59. Liem A, Reynierse-Buitenwerf GH, Zwinderman AH, et al.: Secondary prevention with folic acid: effects on clinical outcomes. J Am Coll Cardiol 2003, 41:2105–2113.

    Article  PubMed  CAS  Google Scholar 

  60. Selhub J: The many facets of hyperhomocysteinemia: studies from the Framingham cohorts. J Nutr 2006, 136(Suppl 6):1726S–1730S.

    PubMed  CAS  Google Scholar 

  61. Clarke R, Daly L, Robinson K, et al.: Hyperhomocysteinemia and independent risk factor for vascular disease. N Engl J Med 1991, 324:1149–1155.

    Article  PubMed  CAS  Google Scholar 

  62. Harker LA, Slichter SJ, Scott CR, et al.: Homocysteinemia: vascular injury and arterial thrombosis. N Engl J Med 1974, 291:537–541.

    Article  PubMed  CAS  Google Scholar 

  63. Harker LA, Harlan JM, Ross R: Effect of sulfinpyrazone on homocysteine-induced injury and atherosclerosis in baboons. Circ Res 1983, 53:731–738.

    PubMed  CAS  Google Scholar 

  64. Jakubowski H: Biosynthesis and reactions of homocysteine thiolactone. In Homocysteine in Health and Disease. Edited by Carmel R, Jacobsen DW. New York: Cambridge University Press; 2001:21–31.

    Google Scholar 

  65. Heinecke JW: Unique aspects of sulfur chemistry: homocysteine and lipid oxidation. In Homocysteine in Health and Disease. Edited by Carmel R, Jacobsen DW. New York: Cambridge University Press; 2001:32–38.

    Google Scholar 

  66. Villareal DT, Miller BV 3rd, Banks M, et al.: Effect of lifestyle intervention on metabolic coronary heart disease risk factors in obese older adults. Am J Clin Nutr 2006, 84:1317–1327.

    PubMed  CAS  Google Scholar 

  67. Halton TL, Willett WC, Liu S, et al.: Low-carbohydratediet score and the risk of coronary heart disease in women. N Engl J Med 2006, 355:1991–2002.

    Article  PubMed  CAS  Google Scholar 

  68. Yang Q, Botto LD, Erickson D, et al.: Improvement in stroke mortality in Canada and the United States, 1990–2002. Circulation 2006, 113:1335–1343.

    Article  PubMed  Google Scholar 

  69. Rasouli ML, Khurram N, Blumenthal RS, et al.: Plasma homocysteine predicts progression of atherosclerosis. Atherosclerosis 2005, 181:159–165.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Loscalzo MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maron, B.A., Loscalzo, J. Should hyperhomocysteinemia be treated in patients with atherosclerotic disease?. Curr Atheroscler Rep 9, 375–383 (2007). https://doi.org/10.1007/s11883-007-0048-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-007-0048-x

Keywords

Navigation