Skip to main content
Log in

Noninvasive atherosclerosis imaging for predicting cardiovascular events and assessing therapeutic interventions

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Noninvasive assessment of atherosclerosis offers an opportunity to provide individual cardiovascular risk management and an opportunity to monitor the efficacy of therapy targeted toward atherosclerosis. The three imaging modalities that currently hold the most promise at the clinical and research levels are ultrasound for carotid intima-media thickness, computed tomography for coronary artery calcification, and magnetic resonance imaging for carotid and aortic plaque imaging. The following review describes the evidence that validates each technique as a surrogate marker of atherosclerosis, with an emphasis on cardiovascular events and the progression of disease. Both the particular strengths and limitations of each imaging modality are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Mukherjee D, Yadav JS: Carotid artery intimal-medial thickness: indicator of atherosclerotic burden and response to risk factor modification. Am Heart J 2002, 144:753–759.

    Article  PubMed  Google Scholar 

  2. Simon A, Gariepy J, Chirnoni G, et al.: Intima-media thicknes: a new tool for diagnosis and treatment of cardiovascular risk. J Hypertens 2002, 20:159–169.

    Article  PubMed  CAS  Google Scholar 

  3. Crouse JR III, Craven TE, Hagaman AP, Bond MG: Association of coronary disease with segment-specific intimal-medial thickening of the extracranial carotid artery. Circulation 1995, 92:1141–1147.

    PubMed  Google Scholar 

  4. Crouse JR, Goldbourt U, Evans G, et al.: Risk factors and segment-specific carotid arterial enlargement in the Atherosclerosis Risk in Communities (ARIC) cohort. Stroke 1996, 27:69–75.

    PubMed  CAS  Google Scholar 

  5. Knoflach M, Kiechl S, Kind M, et al.: Cardiovascular risk factors and atherosclerosis in young males: ARMY study (Atherosclerosis Risk-Factors in Male Youngsters). Circulation 2003, 108:1064–1069.

    Article  PubMed  Google Scholar 

  6. Anand SS, Yusuf S, Vuksan V, et al.: Differences in risk factors, atherosclerosis, and cardiovascular disease between ethnic groups in Canada: the Study of Health Assessment and Risk in Ethnic groups (SHARE)[comment]. Lancet 2000, 356:279–284.

    Article  PubMed  CAS  Google Scholar 

  7. Chambless LE, Heiss G, Folsom AR, et al.: Association of coronary heart disease incidience with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Epidemiol 1997, 146:483–497.

    PubMed  CAS  Google Scholar 

  8. Hodis HN, Mack WJ, LaBree L, et al.: The role of carotid arterial intima-media thickness in predicting clinical coronary events. Ann Intern Med 1998, 128:262–269.

    PubMed  CAS  Google Scholar 

  9. O’Leary DH, Polak JF, Kronmal RA, et al.: Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N Engl J Med 1999, 340:14–22.

    Article  PubMed  CAS  Google Scholar 

  10. Byington RP, Furberg CD, Crouse JR III, et al.: Pravastatin, lipids, and atherosclerosis in the carotid arteries (PLAC-II). Am J Cardiol 1995, 76:54C-59C.

    Article  PubMed  CAS  Google Scholar 

  11. Probstfield JL, Margitic SE, Byington RP, et al.: Results of the primary outcome measure and clinical events from the Asymptomatic Carotid Artery Progression Study. Am J Cardiol 1995, 76:47C-53C.

    Article  PubMed  CAS  Google Scholar 

  12. Salonen R, Nyyssonen K, Porkkala E, et al.: Kuopio Atherosclerosis Prevention Study (KAPS). A population-based primary preventive trial of the effect of LDL lowering on atherosclerotic progression in carotid and femoral arteries. Circulation 1995, 92:1758–1764.

    PubMed  CAS  Google Scholar 

  13. MacMahon S, Sharpe N, Gamble G, et al.: Effects of lowering average of below-average cholesterol levels on the progression of carotid atherosclerosis: results of the LIPID Atherosclerosis substudy. LIPID Trial Research Group [erratum appears in Circulation 1996, 97:2479]. Circulation 1998, 97:1784–1790.

    PubMed  CAS  Google Scholar 

  14. Smilde TJ, van Wissen S, Wollersheim H, et al.: Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial [comment]. Lancet 2001, 357:577–581.

    Article  PubMed  CAS  Google Scholar 

  15. Blankenhorn DH, Azen SP, Kramsch DM, et al.: Coronary angiographic changes with lovastatin therapy. The Monitored Atherosclerosis Regression Study (MARS). The MARS Research Group [see comments]. Ann Intern Med 1993, 119:969–976.

    PubMed  CAS  Google Scholar 

  16. Lonn E, Yusuf S, Dzavik V, et al.: Effects of ramipril and vitamin E on atherosclerosis: the study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (SECURE). Circulation 2001, 103:919–925.

    PubMed  CAS  Google Scholar 

  17. MacMahon S, Gea SN: Randomized, placebo-controlled trial of the angiotensin-converting enzyme inhibitor, ramipril, in patients with coronary or other occlusive arterial disease: PART-2 Collaborative Research Group. J Am Coll Cardiol 2000, 36:438–443.

    Article  PubMed  CAS  Google Scholar 

  18. Stanton AV, Chapman JN, Mayet J: Effects of blood pressure lowering with amlodipine or lisinopril on vascular structure of the common carotid artery. Clin Sci 2001, 101:455–464.

    Article  PubMed  CAS  Google Scholar 

  19. Pitt B, Byington RP, Furberg CD, et al.: Effect of amlodipine on the progression of atherosclerosis and the occurrence of clinical events. Circulation 2000, 102:1503–1510.

    PubMed  CAS  Google Scholar 

  20. Wikstrand J, Berglund G, Hedblad B, Hulthe J: Antiatherosclerotic effects of beta-blockers. Am J Cardiol 2003, 91:25H-29H.

    Article  PubMed  CAS  Google Scholar 

  21. Rumberger JA, Simons DB, Fitzpatrick LA, et al.: Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study [comment]. Circulation 1995, 92:2157–2162.

    PubMed  CAS  Google Scholar 

  22. Mautner GC, Mautner SL, Froehlich J, et al.: Coronary artery calcification: assessment with electron beam CT and histomorphometric correlation [comment]. Radiology 1994, 192:619–623.

    PubMed  CAS  Google Scholar 

  23. Hoff JA, Daviglus ML, Chomka EV, et al.: Conventional coronary artery disease risk factors and coronary artery calcium detected by electron beam tomography in 30,908 healthy individuals. Ann Epidemiol 2003, 13:163–169.

    Article  PubMed  Google Scholar 

  24. Rich S, McLaughlin VV: Detection of subclinical cardiovascular disease: the emerging role of electron beam computed tomography. Prev Med 2002, 34:1–10.

    Article  PubMed  Google Scholar 

  25. Haberl R, Becker A, Leber A, et al.: Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients. J Am Coll Cardiol 2001, 37:451–457.

    Article  PubMed  CAS  Google Scholar 

  26. Arad Y, Spadaro LA, Goodman K, et al.: Predictive value of electron beam computed tomography of the coronary arteries. 19-month follow-up of 1173 asymptomatic subjects [comment]. Circulation 1996, 93:1951–1953.

    PubMed  CAS  Google Scholar 

  27. Detrano R, Hsiai T, Wang S, et al.: Prognostic value of coronary calcification and angiographic stenoses in patients undergoing coronary arteriography. J Am Coll Cardiol 1996, 27:285–290.

    Article  PubMed  CAS  Google Scholar 

  28. Qu W, Le TT, Azen SP, et al.: Value of coronary artery calcium scanning by computed tomography for predicting coronary heart disease in diabetic subjects. Diabetes Care 2003, 26:905–910.

    Article  PubMed  Google Scholar 

  29. Raggi P, Callister TQ, Cooil B, et al.: Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography [comment]. Circulation 2000, 101:850–855.

    PubMed  CAS  Google Scholar 

  30. Pohle K, Ropers D, Maffert R, et al.: Coronary calcifications in young patients with first, unheralded myocardial infarction: a risk factor matched analysis by electron beam tomography. Heart (British Cardiac Society) 2003, 89:625–628.

    CAS  Google Scholar 

  31. O’Malley PG, Taylor AJ, Jackson JL, et al.: Prognostic value of coronary electron-beam computed tomography for coronary heart disease events in asymptomatic populations. Am J Cardiol 2000, 85:945–948.

    Article  PubMed  CAS  Google Scholar 

  32. Wong ND, Hsu JC, Detrano RC, et al.: Coronary artery calcium evaluation by electron beam computed tomography and its relation to new cardiovascular events. Am J Cardiol 2000, 86:495–498.

    Article  PubMed  CAS  Google Scholar 

  33. Kondos GT, Hoff JA, Sevrukov A, et al.: Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults [comment]. Circulation 2003, 107:2571–2576.

    Article  PubMed  Google Scholar 

  34. Arad Y, Roth M, Newstein D, et al.: Coronary calcification, coronary risk factors, and atherosclerotic cardiovascular disease events. The St. Francis Heart Study. J Am Coll Cardiol 2003, 41:6–0.

    Google Scholar 

  35. Budoff MJ, Raggi P: Coronary artery disease progression assessed by electron-beam computed tomography. Am J Cardiol 2001, 88:46E-50E.

    Article  PubMed  CAS  Google Scholar 

  36. Wong ND: Surrogate measures of atherosclerosis and implications for evaluating cardiovascular risk. Diabetes Obesity Metab 2003, 5:73–80.

    Article  Google Scholar 

  37. Wong ND: Surrogate measures of atherosclerosis and implications for evaluating cardiovascular risk. Diabetes Obesity Metab 2003, 5:73–80.

    Article  Google Scholar 

  38. Tani T, Yamakami S, Matsushita T, et al.: Comparison of coronary artery calcium progression by electron beam computed tomography and angiographically defined progression. Am J Cardiol 2003, 91:865–867.

    Article  PubMed  CAS  Google Scholar 

  39. Achenbach S, Ropers D, Pohle K, et al.: Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation 2002, 106:1077–1082.

    Article  PubMed  CAS  Google Scholar 

  40. Raggi P, Callister TQ, Davidson M, et al.: Aggressive versus moderate lipid-lowering therapy in postmenopausal women with hypercholesterolemia: rationale and design of the Beyond Endorsed Lipid Lowering with EBT Scanning (BELLES) trial. Am Heart J 2001, 141:722–726.

    Article  PubMed  CAS  Google Scholar 

  41. Motro M, Shemesh J, Grossman E: Coronary benefits of calcium antagonist therapy for patients with hypertension. Curr Opin Cardiol 2001, 16:349–355.

    Article  PubMed  CAS  Google Scholar 

  42. Brown MJ, Palmer CR, Castaigne A, et al.: Morbidity and mortality in patients randomised to double-blind treatment with a long-acting calcium-channel blocker or diuretic in the International Nifedipine GITS study: Intervention as a Goal in Hypertension Treatment (INSIGHT) [comment] [erratum appears in Lancet 2000, 356:514]. Lancet 2000, 356:366–372.

    Article  PubMed  CAS  Google Scholar 

  43. Greenland P, Abrams J, Aurigemma GP, et al.: Prevention Conference V: Beyond secondary prevention: identifying the high-risk patient for primary prevention: noninvasive tests of atherosclerotic burden: Writing Group III. Circulation 2000, 101:E16-E22.

    PubMed  CAS  Google Scholar 

  44. O’Malley PG, Feuerstein IM, Taylor AJ: Impact of electron beam tomography, with or without case management, on motivation, behavioral change, and cardiovascular risk profile: a randomized controlled trial [comment]. JAMA 2003, 289:2215–2223.

    Article  PubMed  Google Scholar 

  45. Corti R, Fuster V: New understanding, diagnosis, and prognosis of atherothrombosis and the role of imaging. Am J Cardiol 2003, 91:17A-26A.

    Article  PubMed  Google Scholar 

  46. Corti R, Fayad ZA, Fuster V, et al.: Effects of lipid-lowering by simvastatin on human atherosclerotic lesions—a longitudinal study by high-resolution, noninvasive magnetic resonance imaging. Circulation 2001, 104:249–252.

    PubMed  CAS  Google Scholar 

  47. Atherosclerotic disease of the aortic arch as a risk factor for recurrent ischemic stroke. The French Study of Aortic Plaques in Stroke Group [comment]. N Engl J Med 1996, 334:1216–1221.

  48. Fayad ZA, Nahar T, Fallon JT, et al.: In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography. Circulation 2000, 101:2503–2509.

    PubMed  CAS  Google Scholar 

  49. Wentzel JJ, Aguiar SH, Fayad ZA: Vascular MRI in the diagnosis and therapy of the high risk atherosclerotic plaque. J Intervent Cardiol 2003, 16:129–142.

    PubMed  Google Scholar 

  50. Summers RM, Andrasko-Bourgeois J, Feuerstein IM, et al.: Evaluation of the aortic root by MRI: insights from patients with homozygous familial hypercholesterolemia. Circulation 1998, 98:509–518.

    PubMed  CAS  Google Scholar 

  51. Jaffer FA, O’Donnell CJ, Larson MG, et al.: Age and sex distribution of subclinical aortic atherosclerosis: a magnetic resonance imaging examination of the Framingham Heart Study. Arterioscler Thromb Vasc Biol 2002, 22:849–854.

    Article  PubMed  CAS  Google Scholar 

  52. Choudhury RP, Aguinaldo JG, Rong JX, et al.: Atherosclerotic lesions in genetically modified mice quantified in vivo by non-invasive high-resolution magnetic resonance microscopy. Atherosclerosis 2002, 162:315–321.

    Article  PubMed  CAS  Google Scholar 

  53. Ouhlous M, Lethimonnier F, Dippel DW, et al.: Evaluation of a dedicated dual phased-array surface coil using a black-blood FSE sequence for high resolution MRI of the carotid vessel wall. J Magn Res Imag 2002, 15:344–351.

    Article  Google Scholar 

  54. Toussaint JF, LaMuraglia GM, Southern JF, et al.: Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 1996, 94:932–938.

    PubMed  CAS  Google Scholar 

  55. Yuan C, Mitsumori LM, Ferguson MS, et al.: In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 2001, 104:2051–2056.

    PubMed  CAS  Google Scholar 

  56. Yuan C, Zhang SX, Polissar NL, et al.: Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 2002, 105:181–185.

    Article  PubMed  Google Scholar 

  57. Meissner OA, Rieger J, Rieber J, et al.: High-resolution MR imaging of human atherosclerotic femoral arteries in vivo: validation with intravascular ultrasound. J Vasc Intervent Radiol 2003, 14(2 pt 1):t-31.

    Google Scholar 

  58. Goyen M, Quick HH, Debatin JF, et al.: Whole-body three-dimensional MR angiography with a rolling table platform: initial clinical experience. Radiology 2002, 224:270–277.

    Article  PubMed  Google Scholar 

  59. Pohost GM, Hung L, Doyle M: Clinical use of cardiovascular magnetic resonance. Circulation 2003, 108:647–653.

    Article  PubMed  Google Scholar 

  60. Kim WY, Danias PG, Stuber M, et al.: Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 2001, 345:1863–1869.

    Article  PubMed  CAS  Google Scholar 

  61. Fayad ZA, Fuster V, Fallon JT, et al.: Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 2000, 102:506–510.

    PubMed  CAS  Google Scholar 

  62. Botnar RM, Stuber M, Kissinger KV, et al.: Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 2000, 102:2582–2587.

    PubMed  CAS  Google Scholar 

  63. Kim WY, Stuber M, Bornert P, et al.: Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 2002, 106:296–299.

    Article  PubMed  Google Scholar 

  64. Fayad ZA, Fuster V: The human high-risk plaque and its detection by magnetic resonance imaging. Am J Cardiol 2001, 88(2A):42E-45E.

    Article  PubMed  CAS  Google Scholar 

  65. Schwitter J, Nanz D, Kneifel S, et al.: Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 2001, 103:2230–2235.

    PubMed  CAS  Google Scholar 

  66. Corti R, Fuster V, Fayad ZA, et al.: Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years’ follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation 2002, 106:2884–2887.

    Article  PubMed  CAS  Google Scholar 

  67. Zhao XQ, Yuan C, Hatsukami TS, et al.: Effects of prolonged intensive lipid-lowering therapy on the characteristics of carotid atherosclerotic plaques in vivo by MRI: a case-control study. Arterioscler Thromb Vasc Biol 2001, 21:1623–1629.

    PubMed  CAS  Google Scholar 

  68. Bisoendial RJ, Hovingh GK, de Groot E, et al.: Measurement of subclinical atherosclerosis: beyond risk factor assessment. Curr Opin Lipidol 2002, 13:595–603.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacoby, D.S., Mohler, E.R. & Rader, D.J. Noninvasive atherosclerosis imaging for predicting cardiovascular events and assessing therapeutic interventions. Curr Atheroscler Rep 6, 20–26 (2004). https://doi.org/10.1007/s11883-004-0112-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-004-0112-8

Keywords

Navigation