Skip to main content

Advertisement

Log in

Vascular smooth muscle diversity: Insights from developmental biology

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Vascular smooth muscle exhibits remarkable structural and functional diversity. For many years, this diversity was thought to be due to plasticity of a single type of smooth muscle cell responding to biologic and mechanical variations in the local environment. However, recent studies of vascular development employing novel lineage mapping and mouse mutagenesis approaches suggest that much of the smooth muscle diversity found in adult blood vessels may have a developmental basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Owens GK: Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 1995, 75:487–517.

    PubMed  CAS  Google Scholar 

  2. Walker LN, Bowen-Pope DF, Ross R, Reidy MA: Production of platelet-derived growth factor-like molecules by cultured arterial smooth muscle cells accompanies proliferation after arterial injury. Proc Natl Acad Sci U S A 1986, 83:7311–7315.

    Article  PubMed  CAS  Google Scholar 

  3. Majesky MW, Giachelli CM, Reidy MA, Schwartz SM: Rat carotid neointimal smooth muscle cells reexpress a developmentally-regulated mRNA phenotype during repair of arterial injury. Circ Res 1992, 71:759–768.

    PubMed  CAS  Google Scholar 

  4. Bochaton-Piallat ML, Ropraz P, Gabbiani F, Gabbiani G: Phenotypic heterogeneity of rat arterial smooth muscle cell clones: implications for the development of experimental intimal thickening. Arterioscler Thromb Vasc Biol 1996, 16:815–820.

    Article  PubMed  CAS  Google Scholar 

  5. Frid MG, Aldashey AA, Dempsey EC, Stenmark KR: Smooth muscle cells isolated from discrete compartments of the mature vascular media exhibit unique phenotypes and distinct growth capabilities. Circ Res 1997, 81:940–952.

    PubMed  CAS  Google Scholar 

  6. Pease DC, Paul WJ: Electron microscopy of elastic arteries. The thoracic aorta of the rat. J Ultrastr Res 1960, 3:469–483.

    Article  CAS  Google Scholar 

  7. Wissler RW: The arterial medial cell, smooth muscle or multifunctional mesenchyme? J Atheroscler Res 1968, 8:201–213.

    Article  Google Scholar 

  8. Ross R, Klebanoff SJ: The smooth muscle cell. I. In vivo synthesis of connective tissue proteins. J Cell Biol 1971, 50:159–171.

    Article  PubMed  CAS  Google Scholar 

  9. Poole JC, Cromwell SB, Benditt EP: Behavior of smooth muscle cells and formation of extracellular structures in the reaction of arterial walls to injury. Am J Pathol 1971, 62:391–414.

    PubMed  CAS  Google Scholar 

  10. Chamley-Campbell JH, Campbell GR, Ross R: The smooth muscle cell in culture. Physiol Rev 1979, 59:1–61.

    PubMed  CAS  Google Scholar 

  11. LeLievre C, LeDouarin N: Mesenchymal derivatives of the neural crest: analysis of chimeric quail and chick embryos. J Embryol Exp Morphol 1975, 34:125–154.

    CAS  Google Scholar 

  12. Kirby ML, Gale TF, Stewart DE: Neural crest cells contribute to normal aorticopulmonary septation. Science 1983, 220:1059–1061.

    Article  PubMed  CAS  Google Scholar 

  13. Kirby ML, Walso KL: Neural crest and cardiovascular patterning. Circ Res 1995, 77:211–215.

    PubMed  CAS  Google Scholar 

  14. Rosenquist TH, Beall AC: Elastogenic cells in the developing cardiovascular system: smooth muscle, nonmuscle and cardiac neural crest. Ann NY Acad Sci 1990, 588:106–119.

    Article  PubMed  CAS  Google Scholar 

  15. Rosenquist TH, Kirby ML, van Mierop LH: Solitary aortic arch artery. A result of surgical ablation of cardiac neural crest and nodose placode in the avian embryo. Circulation 1989, 80:1469–1475.

    Article  PubMed  CAS  Google Scholar 

  16. Phillips MT 3rd, Waldo K, Kirby ML: Neural crest ablation does not alter pulmonary vein development in the chick embryo. Anat Rec 1989, 223:292–298.

    Article  PubMed  Google Scholar 

  17. Millino C, Sarinella F, Tiveron C, et al.: Cardiac and smooth muscle cell contribution to the formation of the murine pulmonary veins. Dev Dyn 2000, 218:414–425.

    Article  PubMed  CAS  Google Scholar 

  18. Topouzis S, Majesky MW: Smooth muscle lineage diversity in the chick embryo: differences in growth and transcriptional responses to transforming growth factor-beta. Dev Biol 1996, 178:430–445.

    Article  CAS  Google Scholar 

  19. Gadson PF Jr, Dalton ML, Patterson E, et al.: Differential response of mesoderm- and neural crest-derived smooth muscle to TGF-beta1: regulation of c-myb and alpha1 (I) procollagen genes. Exp Cell Res 1997, 230:169–180.

    Article  PubMed  CAS  Google Scholar 

  20. Thieszen SL, Dalton ML, Gadson PF Jr, et al.: Embryonic lineage of vascular smooth muscle cells determines responses to collagen matrices and integrin receptor expression. Exp Cell Res 1997, 227:135–145.

    Article  Google Scholar 

  21. Mikawa T, Gourdie RG: Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 1996, 174:221–232.

    Article  PubMed  CAS  Google Scholar 

  22. Manasek FJ: Embryonic development of the heart. II. Formation of the epicardium. J Exp Embryol Morphol 1969, 22:333–348.

    CAS  Google Scholar 

  23. Gittenberger-de Groot AC, Vrancken Peeters M, Mentink M, et al.: Epicardium-derived cell contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 1998, 82:1043–1052.

    PubMed  CAS  Google Scholar 

  24. Jiang X, Rowditch DH, Soriano P, et al.: Fate of the mammalian cardiac neural crest. Development 2000, 127:1607–1616.

    PubMed  CAS  Google Scholar 

  25. Svensson EC, Huggins GS, Lin H, et al.: A syndrome of tricuspid atresia in mice with a targeted mutation of the gene encoding Fog-2. Nat Genet 2000, 25:353–356.

    Article  PubMed  CAS  Google Scholar 

  26. Tevosian SG, Deconinck AE, Tanaka M, et al.: FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 2000, 101:729–739.

    Article  PubMed  CAS  Google Scholar 

  27. DeRuiter MC, Poelmann RE, VanMunsteren JC, et al.: Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 1997, 80:444–451.

    PubMed  CAS  Google Scholar 

  28. Yamashita J, Itoh H, Hirashima M, et al.: Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000, 408:92–96.

    Article  PubMed  CAS  Google Scholar 

  29. Carmeliet P: One cell, two fates. Nature 2000, 408:43–45.

    Article  PubMed  CAS  Google Scholar 

  30. Majesky MW, Schwartz SM: An origin for smooth muscle cells from endothelium? Circ Res 1997, 80:601–603.

    PubMed  CAS  Google Scholar 

  31. Frid MG, Kale VA, Stenmark KR: Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation. Circ Res 2002, 90:1189–1196.

    Article  PubMed  CAS  Google Scholar 

  32. Arciniegas E, Ponce L, Hartt Y, et al.: Intimal thickening involves transdifferentiation of embryonic endothelial cells. Anat Rec 2000, 258:47–57.

    Article  PubMed  CAS  Google Scholar 

  33. Shimizu K, Sugiyama S, Aikawa M, et al.: Host bone-marrow cells are a source of donor intimal smooth-muscle-like cells in murine aortic transplant arteriopathy. Nat Med 2001, 7:738–741.

    Article  PubMed  CAS  Google Scholar 

  34. Campbell JH, Efendy JL, Han CL, et al.: Haematopoietic origin of myofibroblasts formed in the peritoneal cavity in response to a foreign body. J Vasc Res 2000, 37:364–371.

    Article  PubMed  CAS  Google Scholar 

  35. Simper D, Stalboerger PG, Panetta CJ, et al.: Smooth muscle progenitor cells in human blood. Circulation 2002, 106:1199–1204.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majesky, M.W. Vascular smooth muscle diversity: Insights from developmental biology. Current Atherosclerosis Reports 5, 208–213 (2003). https://doi.org/10.1007/s11883-003-0026-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-003-0026-x

Keywords

Navigation