Skip to main content

Advertisement

Log in

Atherogenesis and the arginine hypothesis

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

In patients who have elevated levels of plasma ADMA, a relative deficiency of L-arginine has been found to contribute to the pathophysiology of athersclerosis, causing vasoconstriction, and accelerating atherogenesis. This finding—that there is a relative deficiency of L-arginine in atherosclerotic disease—is a breakthrough that will open new avenues of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Pohl U, et al.: Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 1986, 8:37–44.

    PubMed  CAS  Google Scholar 

  2. Cooke JP, et al.: Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest 1991, 88:1663–1671.

    PubMed  CAS  Google Scholar 

  3. Rees D, Palmer R, Moncada S: Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A 1989, 86:3375–3378.

    Article  PubMed  CAS  Google Scholar 

  4. Vallance P, Collier J, Moncada S: Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989, 2:997–1000.

    Article  PubMed  CAS  Google Scholar 

  5. Cooke J, Dzau V: Nitric oxide synthase: role in the genesis of vascular disease. Annual Rev Med 1997, 48:489–509.

    Article  CAS  Google Scholar 

  6. Huang PL, et al.: Hypertension in mice lacking the gene for endothelial nitric oxide synthase [see comments]. Nature 1995, 377:239–242.

    Article  PubMed  CAS  Google Scholar 

  7. Creager MA, et al.: Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J Clin Invest 1990, 86:228–234.

    PubMed  CAS  Google Scholar 

  8. Celermajer DS, et al.: Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol 1994, 24:1468–1474.

    Article  PubMed  CAS  Google Scholar 

  9. Ludmer PL, et al.: Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986, 315:1046–1051.

    Article  PubMed  CAS  Google Scholar 

  10. Nabel E, Selwyn A, Ganz P: Large coronary arteries in humans are responsive to changing blood flow: an endothelium-dependent mechanism that fails in patients with atherosclerosis. J Am Coll Cardiol 1990, 16:349–356.

    Article  PubMed  CAS  Google Scholar 

  11. Garg UC, Hassid A: Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest, 1989, 83:1774–1777.

    PubMed  CAS  Google Scholar 

  12. Numaguchim K, et al.: Chronic inhibition of nitric oxide synthesis causes coronary microvascular remodeling in rats. Hypertension 1995, 26:957–962.

    Google Scholar 

  13. Weidinger F, et al.: Persistent dysfunction of regenerated endothelium after balloon angioplasty of rabbit iliac artery. Circulation 1990, 81:1667–1679.

    PubMed  CAS  Google Scholar 

  14. von der Leyen HE, et al.: Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci U S A 1995, 92:1137–1141.

    Article  PubMed  Google Scholar 

  15. Le Tourneau T, et al.: Role of nitric oxide in restenosis after experimental balloon angioplasty in the hypercholesterolemic rabbit: effects on neointimal hyperplasia and vascular remodeling. J Am Coll Cardiol 1999, 33:876–882.

    Article  PubMed  Google Scholar 

  16. De Caterina R, et al.: Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995, 96:60–68.

    PubMed  Google Scholar 

  17. Tsao P, Wang B, Buitrago R: Nitric oxide regulates monocyte chemotactic protein-1. Circulation 1997, 96:1168–1172.

    Google Scholar 

  18. Collins T, et al.: Transcriptional regulation of endothelial cell adhesion molecules: NF- kappa B and cytokine-inducible enhancers. FASEB J 1995, 9:899–909.

    PubMed  CAS  Google Scholar 

  19. Cohen RA: The role of nitric oxide and other endothelium-derived vasoactive substances in vascular disease. Prog Cardiovasc Dis 1995, 38:105–128.

    Article  PubMed  CAS  Google Scholar 

  20. Cohen GA, et al.: Nitric oxide regulates endothelium-dependent vasodilator responses in rabbit hindquarters vascular bed in vivo. Am J Physiol, 1996, 271:H133–139.

    PubMed  CAS  Google Scholar 

  21. Stamler J, et al.: N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor. Circ Res 1989, 65:789–795.

    PubMed  CAS  Google Scholar 

  22. Tsao P, McEnvoy LM, Drexler H: Enhanced endothelial adhesiveness in hypercholesterolemia is attenuated by L-arginine. Circulation 1994, 89:2176–2182.

    PubMed  CAS  Google Scholar 

  23. Tsao P, et al.: L-arginine attenuates platelet reactivity in hypercholesterolemic rabbits. Arterioscler Thromb 1994, 14:1529–1533.

    PubMed  CAS  Google Scholar 

  24. Cayatte AJ, et al.: Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler Thromb 1994, 14:753–759.

    PubMed  CAS  Google Scholar 

  25. Naruse M, et al.: Effects of two calcium channel blockers on messenger RNA expression of endothelin-1 and nitric oxide synthase in cardiovascular tissue of hypertensive rats. J Hypertens 1999, 17:53–60.

    Article  PubMed  CAS  Google Scholar 

  26. Zeiher AM: Endothelial vasodilator dysfunction: pathogenetic link to myocardial ischaemia or epiphenomenon? Lancet 1996, 348(suppl 1):10–12.

    Article  Google Scholar 

  27. Zeiher AM, et al.: Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia. Circulation 1995, 91:2345–2352.

    PubMed  CAS  Google Scholar 

  28. Suwaidi J, et al.: Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 2000, 101:948–954.

    PubMed  CAS  Google Scholar 

  29. Lerman A, et al.: Chronic L-arginine supplement improves coronary endothelial function in humans. Circulation 1997, Submitted for review.

  30. Ohara Y, Petersen TE, Harrison DG: Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993, 91:2546–2551.

    PubMed  CAS  Google Scholar 

  31. Rubanyi GM, Vanhoutte PM: Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol (Heart Circ Physiol 19) 1986, 250:H822-H827.

    CAS  Google Scholar 

  32. Beckman J, Koppenol W: Nitric oxide, superoxide, and peroxynitrite: the good, the bad, ad the ugly. Am J Physiol 1996, 271:C1424-C1437.

    PubMed  CAS  Google Scholar 

  33. Mugge A, et al.: Chronic treatment with polyethylene-glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits. Circ Res 1991, 69:1293–1300.

    PubMed  CAS  Google Scholar 

  34. Gokce N, et al.: Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1999, 99:3234–3240.

    PubMed  CAS  Google Scholar 

  35. Ramasamy S, et al.: Modulation of expression of endothelial nitric oxide synthase by nordihydroguaiaretic acid, a phenolic antioxidant in cultured endothelial cells. Mol Pharmacol, 1999, 56:116–123.

    PubMed  CAS  Google Scholar 

  36. Pou S, et al.: Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem 1992, 267:24173–24176.

    PubMed  CAS  Google Scholar 

  37. Stroes E, et al.: Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest, 1997, 99:41–46.

    PubMed  CAS  Google Scholar 

  38. Xia Y, et al.: Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem 1998, 273:25804–25808.

    Article  PubMed  CAS  Google Scholar 

  39. Kirkwood A, et al.: Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ Res 1995, 77:510–518.

    Google Scholar 

  40. Vasquez-Vivar J, et al.: Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 1998, 95:9220–9225.

    Article  PubMed  CAS  Google Scholar 

  41. Huang A, et al.: Ascorbic acid enhances endothelial nitric oxide synthase activity by increasing intracellular tetrahydrobiopterin. J Biol Chem 2000.

  42. Oemar B, et al.: Reduced endothelial nitric oxide synthase expression and production in human atherosclerosis. Circulation 1998, 97:2494–2498.

    PubMed  CAS  Google Scholar 

  43. Liao J, et al.: Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J Biol Chem 1995, 270:319–324.

    Article  PubMed  CAS  Google Scholar 

  44. Hingorani A, et al.: A common variant of the endothelial nitric oxide synthse (Glu298-Asp) is a major risk factor for coronary artery disease in the UK. Circulation 1999, 100:1515–1520.

    PubMed  CAS  Google Scholar 

  45. Vallance P, et al.: Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 1992, 339:572–575.

    Article  PubMed  CAS  Google Scholar 

  46. Fujiwara N, et al.: Study on the relationship between plasma nitrite and nitrate level and salt sensitivity in human hypertension: modulation of nitric oxide synthesis by salt intake. Circulation 2000, 101:856–861.

    PubMed  CAS  Google Scholar 

  47. Böger R, et al.: Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation 1998, 98:1842–1847.

    PubMed  Google Scholar 

  48. Fard A, et al.: Acute elevations of plasma asymmetric dimethylarginine and impaired endothelial function in response to a high-fat meal in patients with type 2 diabetes. Atheroscler Thromb Vasc Biol 2000, 9:2039–2044.

    Google Scholar 

  49. Hand MF, Haynes WG, Webb DJ: Hemodialysis and L-arginine, but not D-arginine, correct renal failure- associated endothelial dysfunction. Kidney Int 1998, 53:1068–1077.

    Article  PubMed  CAS  Google Scholar 

  50. Usui M, et al.: Increased endogenous nitric oxide synthase inhibitor in patients with congestive heart failure. Life Sci 1998, 62:2425–2430.

    Article  PubMed  CAS  Google Scholar 

  51. Holden DP, et al.: Plasma concentrations of asymmetric dimethylarginine, a natural inhibitor of nitric oxide synthase, in normal pregnancy and preeclampsia. Am J Obstet Gynecol 1998, 178:551–556.

    Article  PubMed  CAS  Google Scholar 

  52. Surdacki A, et al.: Reduced urinary excretion of nitric oxide metabolites and increased plasma levels of asymmetric dimethylarginine in men with essential hypertension. J Cardiovasc Pharmacol 1999, 33:652–658.

    Article  PubMed  CAS  Google Scholar 

  53. Yu XJ, Li YJ, and Xiong Y: Increase of an endogenous inhibitor of nitric oxide synthesis in serum of high cholesterol fed rabbits. Life Sci 1994, 54:753–758.

    Article  PubMed  CAS  Google Scholar 

  54. Bode-Boger S, et al.: Elevated L-arginine/dimethylarginine ratio contributes to enhanced systemic NO production by dietary L-arginine in hypercholesterolemic rabbits. Biochem Biophys Res Comm, 1996, 219:598–603.

    Article  PubMed  CAS  Google Scholar 

  55. Matsuoka H, et al.: Asymetrical dimethlarginine, an endogenous nitric oxide synthase inhibitor, in experimental hypertension. Hypertension 1997, 29:242–247.

    PubMed  CAS  Google Scholar 

  56. Boger RH, et al.: Elevation of asymmetrical dimethylarginine may mediate endothelial dysfunction during experimental hyperhomocyst(e)inaemia in humans. Clin Sci 2001, 100:161–167.

    Article  PubMed  CAS  Google Scholar 

  57. Rickenbacher PR, et al.: Incidence and severity of transplant coronary artery disease early and up to 15 years after transplantation as detected by intravascular ultrasound [see comments]. J Am Coll Cardiol 1995, 25:171–177.

    Article  PubMed  CAS  Google Scholar 

  58. Scuteri A, et al.: Asymmetric dimethylarginine plasma concentrations correlate with blood pressure response to salt loading in normotensive postmenopausal women. Circulation 2000, 102(suppl):II-517.

    Google Scholar 

  59. Asagami T, et al.: Metformin attenuates plasma asymmetric dimethylarginine and monocyte adhesion in type 2 diabetes. Circulation 2000, 102:II-232.

    Google Scholar 

  60. Stuehlinger M, et al.: Homocysteine induced accumulation of asymmetric dimethylarginine—role of DDAH and effect of antioxidants. Circulation 2000, 102:II-177.

    Google Scholar 

  61. Najbauer J, et al.: Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. J Biol Chem 1993, 268:10501–10509.

    PubMed  CAS  Google Scholar 

  62. Ghosh SK, Paik WK, Kim S: Purification and molecular identification of two protein methylases I from calf brain. Myelin basic protein- and histone-specific enzyme [published erratum appears in J Biol Chem 1989, Mar 25; 264:5313]. J Biol Chem 1988, 263:19024–19033.

    PubMed  CAS  Google Scholar 

  63. Tang J, Kao PN, Herschman HR: Protein arginine methyltransferase I (PRMT1), the predominant protein arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer binding factor 3. J Biol Chem 2000, 275:19866–19876.

    Article  PubMed  CAS  Google Scholar 

  64. Kakimoto Y, Akazawa S: Isolation and identification of NGNG- and NG, NG-Dimethyl-arginine, N-Mono-, Di-, and trimethyllysine, and glucosylgalactosul- and galactosyl-s-hydroxylsine from human urine. J Biol Chem 1970, 245:5751–5758.

    PubMed  CAS  Google Scholar 

  65. Ogawa T, Kimoto M, Sasaoka K: Occurrence of a new enzyme catalyzing the direct conversion of NG,NG- dimethyl-L-arginine to L-citrulline in rats. Biochem Biophys Res Comm 1987, 148:671–677.

    Article  PubMed  CAS  Google Scholar 

  66. Leiper JM, et al.: Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. Biochem J 1999, 343:209–214.

    Article  PubMed  CAS  Google Scholar 

  67. McDermott JR: Studies on the catabolism of Ng-methyl-arginine, Ng, Ng-dimethylarginine and Ng, Ng-dimethylarginine in the rabbit. Biochem J 1976, 154:179–184.

    PubMed  CAS  Google Scholar 

  68. MacAllister RJ, et al.: Concentration of dimethyl-L-arginine in the plasma of patients with end- stage renal failure. Nephrol Dial Transplant 1996, 11:2449–2452.

    PubMed  CAS  Google Scholar 

  69. MacAllister RJ, et al.: Regulation of nitric oxide synthesis by dimethylarginine dimethylaminohydrolase. Br J Pharmacol 1996, 119:1533–1540.

    PubMed  CAS  Google Scholar 

  70. Ito A, et al.: Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase. Circulation 1999, 99:3092–3095.

    PubMed  CAS  Google Scholar 

  71. Pollock JS, et al.: Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci U S A 1991, 88:10480–10484.

    Article  PubMed  CAS  Google Scholar 

  72. Cooke J, et al.: Arginine restores cholinergic relaxation of hypercholesterolemic rabbit thoracic aorta. Circulation 1991, 83:1057–1062.

    PubMed  CAS  Google Scholar 

  73. Drexler H, et al.: Correction of endothelial dysfunction in coronary microcirculation of hypercholeserolemic patients by L-arginine. Lancet 1991, 338:1546–1550.

    Article  PubMed  CAS  Google Scholar 

  74. Clarkson P, et al.: Oral L-arginine improves endothelium-dependent dilation in hypercholesterolemic young adults. J Clin Invest 1996, 97:1989–1994.

    Article  PubMed  CAS  Google Scholar 

  75. Ceremuzynski L, Chamiec T, Herbaczynska-Cedro K: Effect of supplemental oral L-arginine on exercise capacity in patients with stable angina pectoris. Am J Cardiol 1997, 80:331–333.

    Article  PubMed  CAS  Google Scholar 

  76. Boger R, Bode-Boger S, Thiele W: Restoring vascular nitric oxide formation by L-arginine improves the symptoms of intermittent claudication in patients with peripheral arterial occlusive disease. J Am Coll Cardiol 1998, 32:1336–1344.

    Article  PubMed  CAS  Google Scholar 

  77. Lerman A, et al.: Long-term L-arginine supplementation improves small-vessel coronary endothelial function in humans [see comments]. Circulation 1998, 97:2123–2128.

    PubMed  CAS  Google Scholar 

  78. McDonald KK, et al.: A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the “arginine paradox”. J Biol Chem 1997, 272:31213–31216.

    Article  PubMed  CAS  Google Scholar 

  79. Wei LH, et al.: IL-4 and IL-13 upregulate arginase I expression by cAMP and JAK/STAT6 pathways in vascular smooth muscle cells. Am J Physiol Cell Physiol 2000, 279:C248–256.

    PubMed  CAS  Google Scholar 

  80. Faraci FM, Brian Jr. JE, Heistad DD: Response of cerebral blood vessels to an endogenous inhibitor of nitric oxide synthase. Am J Physiol 1995, 269:H1522–1527.

    PubMed  CAS  Google Scholar 

  81. Maxwell A, et al.: Limb blood flow during exercise is dependent upon nitric oxide. Circulation 1998, 84:369–374.

    Google Scholar 

  82. Chan JR, et al.: Asymmetric dimethylarginine increases mononuclear cell adhesiveness in hypercholesterolemic humans. Arterioscler Throb Vasc Biol, 2000.

  83. Theilmeier G, et al.: Adhesiveness of mononuclear cells in hypercholesterolemic humans is normalized by dietary L-arginine. Arterioscler Thromb Vasc Biol 1997, 17:3557–3564.

    PubMed  CAS  Google Scholar 

  84. Adams MR, et al.: Oral L-arginine improves endothelium-dependent dilatation and reduces monocyte adhesion t o endothelial cells in young men with coronary artery disease. Atherosclerosis 1997, 129:261–269.

    Article  PubMed  CAS  Google Scholar 

  85. Maxwell AJ, Anderson BA, Cooke JP: Nutritional therapy for peripheral arterial disease: A double blind, placebo-controlled, randomized trial of HeartBar. Vasc Med 2000, 5:11–19.

    PubMed  CAS  Google Scholar 

  86. Drexler H, et al.: Effect of L-arginine on coronary endothelial function in cardiac transplant recipients. Relation to vessel wall morphology. Circulation 1994, 89:1615–1623.

    PubMed  CAS  Google Scholar 

  87. Drexler H, et al.: Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet 1991, 338:1546–1550.

    Article  PubMed  CAS  Google Scholar 

  88. Hirooka Y, et al.: Effects of L-arginine on impaired acetylcholine-induced and ischemic vasodilation of the forearm in patients with heart failure. Circulation 1994, 90:658–668.

    PubMed  CAS  Google Scholar 

  89. Otsuji S, et al.: Attenuation of acetylcholine-induced vasoconstriction by L-arginine is related to the progression of atherosclerosis. Am Heart J 1995, 129:1094–1100.

    Article  PubMed  CAS  Google Scholar 

  90. Blum A, et al.: Effects of oral L-arginine on endothelium-dependent vasodilation and markers of inflammation in healthy postmenopausal women. J Am Coll Cardiol 2000, 35:271–276.

    Article  PubMed  CAS  Google Scholar 

  91. Boger R, et al.: Biochemical evidence for impaired nitric oxide synthesis in patients with peripheral arterial occlusive disease. Circulation 1997, 95:2068–2074.

    PubMed  CAS  Google Scholar 

  92. Gryglewski RJ, et al.: Treatment with L-arginine is likely to stimulate generation of nitric oxide in patients with peripheral arterial obstructive disease. Wien Klin Wochenschr 1996, 108:111–116.

    PubMed  CAS  Google Scholar 

  93. Schellong SM, et al.: Dose-related effect of intravenous L-arginine on muscular blood flow of the calf in patients with peripheral vascular disease: a H215O positron emission tomography study. Clin Sci 1997, 93:159–165.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooke, J.P., Oka, R.K. Atherogenesis and the arginine hypothesis. Curr Atheroscler Rep 3, 252–259 (2001). https://doi.org/10.1007/s11883-001-0068-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-001-0068-x

Keywords

Navigation