Skip to main content

Advertisement

Log in

Biologic effect and molecular regulation of vascular apoptosis in atherosclerosis

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Apoptosis, a form of genetically programmed cell death, plays a key role in regulation of cellularity of the arterial wall. During atherogenesis, deregulated apoptosis may cause abnormalities of arterial morphogenesis, wall structural stability, and metabolisms. Many biophysiologic and biochemical factors, including mechanical forces, reactive oxygen and nitrogen species, cytokines, growth factors, oxidized lipoproteins, etc. may influence apoptosis of vascular cells. The Fas/Fas ligand/caspase death-signaling pathway, Bcl-2 protein family/mitochondria, the tumor suppressive gene p53, and the proto-oncogene c-myc may be activated in atherosclerotic lesions and mediate vascular apoptosis during the development of atherosclerosis. Abnormal expression and dysfunction of these apoptosis-regulating genes may attenuate or accelerate vascular cell apoptosis and affect the integrity and stability of plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of atherosclerosis and its major complication, the acute vascular syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Kerr J, Wyllie A, Currie A: A basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 1972, 26:239–257.

    PubMed  CAS  Google Scholar 

  2. Majno G, Joris I: Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995, 146:3–15.

    PubMed  CAS  Google Scholar 

  3. Virchow R: Die Cellularpathologie: Sechszehnte verlesung, 14 April 1858. Hildesheim, Germany: George Olms; 1966:317–329.

    Google Scholar 

  4. Isner JM, Kearney M, Bortman S, Passeri J: Apoptosis in human atherosclerosis and restenosis. Circulation 1995, 91:2703–2711.

    PubMed  CAS  Google Scholar 

  5. Han DK, Haudenschild CC, Hong MK, et al.: Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol 1995, 147:267–277.

    PubMed  CAS  Google Scholar 

  6. Geng YJ, Libby P: Evidence for apoptosis in advanced human atheroma. Co-localization with interleukin-1 beta-converting enzyme [see comments]. Am J Pathol 1995, 147:251–266.

    PubMed  CAS  Google Scholar 

  7. Bennett MR, Evan GI, Schwartz SM: Apoptosis of rat vascular smooth muscle cells is regulated by p53- dependent and -independent pathways. Circ Res 1995, 77:266–273.

    PubMed  CAS  Google Scholar 

  8. Bennett MR, Evan GI, Schwartz SM: Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 1995, 95:2266–2274.

    Article  PubMed  CAS  Google Scholar 

  9. Kockx MM, De MG, Muhring J, et al.: Distribution of cell replication and apoptosis in atherosclerotic plaques of cholesterol-fed rabbits. Atherosclerosis 1996, 120:115–124.

    Article  PubMed  CAS  Google Scholar 

  10. Bochaton-Piallat ML, Gabbiani F, Redard M, et al.: Apoptosis participates in cellularity regulation during rat aortic intimal thickening. Am J Pathol 1995, 146:1059–1064.

    PubMed  CAS  Google Scholar 

  11. Thompson EB, Ayala-Torres S: Oxysterols and apoptosis: evidence for gene regulation outside the cholesterol pathway. Crit Rev Biochem Mol Biol 1999, 34:25–32.

    Article  PubMed  CAS  Google Scholar 

  12. Harada-Shiba M, Kinoshita M, Kamido H, Shimokado K: Oxidized low density lipoprotein induces apoptosis in cultured human umbilical vein endothelial cells by common and unique mechanisms. J Biol Chem 1998, 273:9681–9687.

    Article  PubMed  CAS  Google Scholar 

  13. Escargueil-Blanc I, Andrieu-Abadie N, Caspar-Bauguil S, et al.: Apoptosis and activation of the sphingomyelin-ceramide pathway induced by oxidized low density lipoproteins are not causally related in ECV-304 endothelial cells. J Biol Chem 1998, 273:27389–27395.

    Article  PubMed  CAS  Google Scholar 

  14. Heermeier K, Leicht W, Palmetshofer A, et al.: Oxidized LDL Suppresses NF-kappaB and Overcomes Protection from Apoptosis in Activated Endothelial Cells. J Am Soc Nephrol 2001, 12:456–463.

    PubMed  CAS  Google Scholar 

  15. Kellner-Weibel G, Geng YJ, Rothblat GH: Cytotoxic cholesterol is generated by the hydrolysis of cytoplasmic cholesteryl ester and transported to the plasma membrane. Atherosclerosis 1999, 146:309–319.

    Article  PubMed  CAS  Google Scholar 

  16. Ross R: Atherosclerosis—an inflammatory disease. N Engl J Med 1999, 340:115–126.

    Article  PubMed  CAS  Google Scholar 

  17. Hansson GK: Cell-mediated immunity in atherosclerosis. Curr Opin Lipidol 1997, 8:301–311.

    PubMed  CAS  Google Scholar 

  18. Hansson GK, Stemme S, Geng YJ, Holm J: Can immunocompetent cells and their cytokines play a role in atherogenesis? Nouv Rev Fr Hematol 1992, 34:S43–46.

    PubMed  Google Scholar 

  19. Auge N, Negre-Salvayre A, Salvayre R, Levade T: Sphingomyelin metabolites in vascular cell signaling and atherogenesis. Prog Lipid Res 2000, 39:207–229.

    Article  PubMed  CAS  Google Scholar 

  20. Geng YJ, Almqvist M, Hansson GK: cDNA cloning and expression of inducible nitric oxide synthase from rat vascular smooth muscle cells. Biochim Biophys Acta 1994, 1218:421–424.

    PubMed  CAS  Google Scholar 

  21. Geng YJ, Petersson AS, Wennmalm A, Hansson GK: Cytokine-induced expression of nitric oxide synthase results in nitrosylation of heme and nonheme iron proteins in vascular smooth muscle cells. Exp Cell Res 1994, 214:418–428.

    Article  PubMed  CAS  Google Scholar 

  22. Geng Y, Hansson GK, Holme E: Interferon-gamma and tumor necrosis factor synergize to induce nitric oxide production and inhibit mitochondrial respiration in vascular smooth muscle cells. Circ Res 1992, 71:1268–1276.

    PubMed  CAS  Google Scholar 

  23. Chatterjee S: Sphingolipids in atherosclerosis and vascular biology. Arterioscler Thromb Vasc Biol 1998, 18:1523–1533.

    PubMed  CAS  Google Scholar 

  24. Geng YJ, Hellstrand K, Wennmalm A, Hansson GK: Apoptotic death of human leukemic cells induced by vascular cells expressing nitric oxide synthase in response to gamma-interferon and tumor necrosis factor-alpha. Cancer Res 1996, 56:866–874.

    PubMed  CAS  Google Scholar 

  25. Ashkenazi A, Dixit VM: Death receptors: signaling and modulation. Science 1998, 281:1305–1308.

    Article  PubMed  CAS  Google Scholar 

  26. Cai W, Devaux B, Schaper W, Schaper J: The role of Fas/APO 1 and apoptosis in the development of human atherosclerotic lesions. Atherosclerosis 1997, 131:177–186.

    Article  PubMed  CAS  Google Scholar 

  27. Fukuo K, Nakahashi T, Nomura S, et al.: Possible participation of Fas-mediated apoptosis in the mechanism of atherosclerosis. Gerontology 1997, 1:35–42.

    Google Scholar 

  28. Geng YJ, Henderson LE, Levesque EB, et al.: Fas is expressed in human atherosclerotic intima and promotes apoptosis of cytokine-primed human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1997, 17:2200–2208.

    PubMed  CAS  Google Scholar 

  29. Walsh K, Sata M: Is extravasation a Fas-regulated process? Mol Med Today 1999, 5:61–67.

    Article  PubMed  CAS  Google Scholar 

  30. Schneider DB, Vassalli G, Wen S, et al.: Expression of Fas ligand in arteries of hypercholesterolemic rabbits accelerates atherosclerotic lesion formation. Arterioscler Thromb Vasc Biol 2000, 20:298–308.

    PubMed  CAS  Google Scholar 

  31. Bjorkerud S, Bjorkerud B: Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol 1996, 149:367–380.

    PubMed  CAS  Google Scholar 

  32. Langille BL: Arterial remodeling: relation to hemodynamics. Can J Physiol Pharmacol 1996, 74:834–841.

    Article  PubMed  CAS  Google Scholar 

  33. Kaiser D, Freyberg MA, Friedl P: Lack of hemodynamic forces triggers apoptosis in vascular endothelial cells. Biochem Biophys Res Commun 1997, 231:586–590.

    Article  PubMed  CAS  Google Scholar 

  34. Dimmeler S, Haendeler J, Rippmann V, et al.: Shear stress inhibits apoptosis of human endothelial cells. FEBS Lett 1996, 399:71–74.

    Article  PubMed  CAS  Google Scholar 

  35. Dimmeler S, Haendeler J, Nehls M, Zeiher AM: Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med 1997, 185:601–617.

    Article  PubMed  CAS  Google Scholar 

  36. Tricot O, Mallat Z, Heymes C, et al.: Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation 2000, 101:2450–2453.

    PubMed  CAS  Google Scholar 

  37. Katoh O, Tauchi H, Kawaishi K, et al.: Expression of the vascular endothelial growth factor (VEGF) effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res 1995, 55:5687–5692.

    PubMed  CAS  Google Scholar 

  38. Fox JC, Shanley JR: Antisense inhibition of basic fibroblast growth factor induces apoptosis in vascular smooth muscle cells. J Biol Chem 1996, 271:12578–12584.

    Article  PubMed  CAS  Google Scholar 

  39. Araki S, Simada Y, Kaji K, Hayashi H: Role of protein kinase C in the inhibition by fibroblast growth factor of apoptosis in serum-depleted endothelial cells. Biochem Biophys Res Commun 1990, 172:1081–1085.

    Article  PubMed  CAS  Google Scholar 

  40. Haimovitz FA, Balaban N, McLoughlin M, et al.: Protein kinase C mediates basic fibroblast growth factor protection of endothelial cells against radiation-induced apoptosis. Cancer Res 1994, 54:2591–2597.

    Google Scholar 

  41. Kondo S, Yin D, Aoki T, et al.: bcl-2 gene prevents apoptosis of basic fibroblast growth factor- deprived murine aortic endothelial cells. Exp Cell Res 1994, 213:428–432.

    Article  PubMed  CAS  Google Scholar 

  42. Lizard G, Gueldry S, Sordet O, et al.: Glutathione is implied in the control of 7-ketocholesterol-induced apoptosis, which is associated with radical oxygen species production. FASEB J 1998, 12:1651–1663.

    PubMed  CAS  Google Scholar 

  43. Geng YJ: Regulation of programmed cell death or apoptosis in atherosclerosis. Heart Vessels 1997, Suppl:76–80.

    Google Scholar 

  44. Kockx MM, Herman AG: Apoptosis in atherosclerosis: beneficial or detrimental? Cardiovasc Res 2000, 45:736–746.

    Article  PubMed  CAS  Google Scholar 

  45. Bennett MR: Apoptosis of vascular smooth muscle cells in vascular remodeling and atherosclerotic plaque rupture. Cardiovasc Res 1999, 41:361–368.

    Article  PubMed  CAS  Google Scholar 

  46. Best PJ, Hasdai D, Sangiorgi G, et al.: Apoptosis. Basic concepts and implications in coronary artery disease. Arterioscler Thromb Vasc Biol 1999, 19:14–22.

    PubMed  CAS  Google Scholar 

  47. Walsh K, Isner JM: Apoptosis in inflammatory-fibroproliferative disorders of the vessel wall. Cardiovasc Res 2000, 45:756–765.

    Article  PubMed  CAS  Google Scholar 

  48. Mallat Z, Tedgui A: Apoptosis in the vasculature: mechanisms and functional importance. Br J Pharmacol 2000, 130:947–962.

    Article  PubMed  CAS  Google Scholar 

  49. Thornberry NA, Lazebnik Y: Caspases: enemies within. Science 1998, 281:1312–1316.

    Article  PubMed  CAS  Google Scholar 

  50. Adams JM, Cory S: The Bcl-2 protein family: arbiters of cell survival. Science 1998, 281:1322–1326.

    Article  PubMed  CAS  Google Scholar 

  51. Geng YJ, Azuma T, Tang JX, et al.: Caspase-3-induced gelsolin fragmentation contributes to actin cytoskeletal collapse, nucleolysis, and apoptosis of vascular smooth muscle cells exposed to proinflammatory cytokines. Eur J Cell Biol 1998, 77:294–302.

    PubMed  CAS  Google Scholar 

  52. Green DR, Reed JC: Mitochondria and apoptosis. Science 1998, 281:1309–1312.

    Article  PubMed  CAS  Google Scholar 

  53. Soengas MS, Alarcon RM, Yoshida H, et al.: Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 1999, 284:156–159.

    Article  PubMed  CAS  Google Scholar 

  54. Evan G, Littlewood T: A matter of life and cell death. Science 1998, 281:1317–1322.

    Article  PubMed  CAS  Google Scholar 

  55. Bennett MR, Macdonald K, Chan SW, et al.: Cooperative interactions between RB and p53 regulate cell proliferation, cell senescence, and apoptosis in human vascular smooth muscle cells from atherosclerotic plaques. Circ Res 1998, 82:704–712.

    PubMed  CAS  Google Scholar 

  56. Bennett MR, Evan GI, Newby AC: Deregulated expression of the c-myc oncogene abolishes inhibition of proliferation of rat vascular smooth muscle cells by serum reduction, interferon-gamma, heparin, and cyclic nucleotide analogues and induces apoptosis. Circ Res 1994, 74:525–536.

    PubMed  CAS  Google Scholar 

  57. Liao HS, Kodama T, Geng YJ: Expression of class A scavenger receptor inhibits apoptosis of macrophages triggered by oxidized low density lipoprotein and oxysterol. Arterioscler Thromb Vasc Biol 2000, 20:1968–1975.

    PubMed  CAS  Google Scholar 

  58. Liao HS, Matsumoto A, Itakura H, et al.: De novo expression of the class-A macrophage scavenger receptor conferring resistance to apoptosis in differentiated human THP-1 monocytic cells. Cell Death Differ 1999, 6:245–255.

    Article  PubMed  CAS  Google Scholar 

  59. Geng YJ, Libby P: Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol 1995, 147:251–266.

    PubMed  CAS  Google Scholar 

  60. Libby P, Geng YJ, Aikawa M, et al.: Macrophages and atherosclerotic plaque stability. Curr Opin Lipidol 1996, 7:330–335.

    Article  PubMed  CAS  Google Scholar 

  61. Libby P, Geng YJ, Sukhova GK, et al.: Molecular determinants of atherosclerotic plaque vulnerability. Ann N Y Acad Sci 1997, 811:134–142.

    Article  PubMed  CAS  Google Scholar 

  62. Shah PK: Plaque disruption and thrombosis: potential role of inflammation and infection. Cardiol Rev 2000, 8:31–39.

    Article  PubMed  CAS  Google Scholar 

  63. Henderson EL, Geng YJ, Sukhova GK, et al.: Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms. Circulation 1999, 99:96–104.

    PubMed  CAS  Google Scholar 

  64. Bombeli T, Karsan A, Tait JF, Harlan JM: Apoptotic vascular endothelial cells become procoagulant. Blood 1997, 89:2429–2442.

    PubMed  CAS  Google Scholar 

  65. Flynn PD, Byrne CD, Baglin TP, et al.: Thrombin generation by apoptotic vascular smooth muscle cells. Blood 1997, 89:4378–4384.

    PubMed  CAS  Google Scholar 

  66. Greeno EW, Bach RR, Moldow CF: Apoptosis is associated with increased cell surface tissue factor procoagulant activity. Lab Invest 1996, 75:281–289.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, YJ. Biologic effect and molecular regulation of vascular apoptosis in atherosclerosis. Curr Atheroscler Rep 3, 234–242 (2001). https://doi.org/10.1007/s11883-001-0066-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-001-0066-z

Keywords

Navigation