Skip to main content
Log in

Postprandial lipemia and coronary risk

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

A number of cross-sectional studies have demonstrated that the magnitude of postprandial lipemia or single postprandial triglyceride values predict asymptomatic and symptomatic atherosclerosis, independent of risk factors measured in the fasting state. Postprandial lipemia reflects an integrated measure of an individual’s triglyceride metabolic capacity. Numerous genetic and environmental factors that are known or suspected to affect triglyceride transport contribute to the magnitude of postprandial lipemia. In this article, mechanisms linking postprandial lipemia with the development and progression of atherosclerosis are described, and determinants of the extent and duration of postprandial lipemia are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Gofman JW, Delalla O, Glazier F, et al.: The serum lipid transport system in health, metabolic disorder, atherosclerosis, and coronary artery disease. Plasma 1954, 2: 413–484.

    Google Scholar 

  2. Albrink M, Man E: Serum triglycerides in coronary artery disease. Arch Intern Med 1959, 103: 4–8.

    CAS  Google Scholar 

  3. Barritt D: Alimentary lipaemia in men with coronary artery disease. Br Med J 1956, 2: 640–644.

    Article  PubMed  CAS  Google Scholar 

  4. Brown D, Heslin A, Doyle J: Postprandial lipemia in health and in ischemic heart disease. N Engl J Med 1961, 264: 733–737.

    Article  CAS  Google Scholar 

  5. Denborough M, Paterson B: Alimentary lipaemia in ischaemic heart disease. Clin Sci 1963, 25: 115–122.

    PubMed  CAS  Google Scholar 

  6. Harlan W, Beischer D: Changes in serum lipoproteins after a large fat meal in normal individuals and in patients with ischemic heart disease. Am Heart J 1963, 66: 61–67.

    Article  PubMed  CAS  Google Scholar 

  7. Miller GJ, Miller NE: Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet 1975, 1: 16–19.

    Article  PubMed  CAS  Google Scholar 

  8. Carlson LA, Bottiger LE, Ahfeldt PE: Risk factors for myocardial infarction in the Stockholm prospective study: a 14-year follow-up focussing on the role of plasma triglycerides and cholesterol. Acta Med Scand 1979, 206: 351–360.

    Article  PubMed  CAS  Google Scholar 

  9. Heyden S, Heiss G, Hames CG, et al.: Fasting triglycerides as predictors of total and CHD mortality in Evans County, Georgia. J Chronic Dis 1980, 33: 275–282.

    Article  PubMed  CAS  Google Scholar 

  10. Fontbonne A, Eschwege E, Cambien F, et al.: Hypertriglyceridaemia as a risk factor of coronary heart disease mortality in subjects with impaired glucose tolerance or diabetes. Results from the 11-year follow-up of the Paris Prospective Study. Diabetologia 1989, 32: 300–304.

    Article  PubMed  CAS  Google Scholar 

  11. Hulley SB, Rosenman RH, Bawol RD, et al.: Epidemiology as a guide to clinical decisions: the association between triglyceride and coronary heart disease. N Engl J Med 1980, 302: 1383–1389.

    Article  PubMed  CAS  Google Scholar 

  12. Criqui MH, Heiss G, Cohn R, et al.: Plasma triglyceride level and mortality from coronary heart disease [see comments]. N Engl J Med 1993, 328: 1220–1225.

    Article  PubMed  CAS  Google Scholar 

  13. Behr SR, Patsch JR, Forte T, et al.: Plasma lipoprotein changes resulting from immunologically blocked lipolysis. J Lipid Res 1981, 22: 443–451.

    PubMed  CAS  Google Scholar 

  14. Ito Y, Azrolan N, O’Connell A, et al.: Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science 1990, 249: 790–793.

    Article  PubMed  CAS  Google Scholar 

  15. Brunzell JD: Familial lipoprotein lipasse deficiency and other causes of the chylomicronemia syndrome. In The metabolic basis of inherited disease, 7 edn. In Edited by Scriver C, Beaudet A, Sly W, Valle D. New York: McGraw-Hill; 1995:1913–1932.

    Google Scholar 

  16. Brown SA, Boerwinkle E, Kashanian FK, et al.: Variation in concentration of lipids, lipoprotein lipids, and apolipoproteins A-I and B in plasma from healthy women. Clin Chem 1990, 36: 207–210.

    PubMed  CAS  Google Scholar 

  17. Assmann G, Schulte H, Funke H, et al.: The emergence of triglycerides as a significant independent risk factor in coronary artery disease. Eur Heart J 1998, 19 Suppl M: M8–14.

    PubMed  Google Scholar 

  18. Assmann G, Schulte H, von Eckardstein A: Hypertriglyceridemia and elevated lipoprotein(a) are risk factors for major coronary events in middle-aged men. Am J Cardiol 1996, 77: 1179–1184.

    Article  PubMed  CAS  Google Scholar 

  19. Hamilton RL, Williams MC, Fielding CJ, et al.: Discoidal bilayer structure of nascent high density lipoproteins from perfused rat liver. J Clin Invest 1976, 58: 667–680.

    PubMed  CAS  Google Scholar 

  20. Green PH, Tall AR, Glickman RM. Rat intestine secretes discoid high density lipoprotein. J Clin Invest 1978, 61: 528–534.

    PubMed  CAS  Google Scholar 

  21. Glomset JA: The metabolic role of lecithin: cholesterol acyltransferase: perspectives from pathology. Adv Lipid Res 1973, 11: 1–65.

    CAS  Google Scholar 

  22. Matz CE, Jonas A: Reaction of human lecithin cholesterol acyltransferase with synthetic micellar complexes of apolipoprotein A-I, phosphatidylcholine, and cholesterol. J Biol Chem 1982, 257: 4541–4546.

    PubMed  CAS  Google Scholar 

  23. Tall AR, Small DM: Plasma high-density lipoproteins. N Engl J Med 1978, 299: 1232–1236.

    Article  PubMed  CAS  Google Scholar 

  24. Patsch JR, Gotto AMJ, Olivercrona T, et al.: Formation of high density lipoprotein2-like particles during lipolysis of very low density lipoproteins in vitro. Proc Natl Acad Sci U S A 1978, 75: 4519–4523.

    Article  PubMed  CAS  Google Scholar 

  25. Tall AR, Green PH: Incorporation of phosphatidylcholine into spherical and discoidal lipoproteins during incubation of egg phosphatidylcholine vesicles with isolated high density lipoproteins or with plasma. J Biol Chem 1981, 256: 2035–2044.

    PubMed  CAS  Google Scholar 

  26. Chung BH, Segrest JP, Smith K, et al.: Lipolytic surface remnants of triglyceride-rich lipoproteins are cytotoxic to macrophages but not in the presence of high density lipoprotein. A possible mechanism of atherogenesis? J Clin Invest 1989, 83: 1363–1374.

    PubMed  CAS  Google Scholar 

  27. Patsch JR, Prasad S, Gotto AMJ, et al.: Postprandial lipemia: a key for the conversion of high density lipoprotein 2 into high-density lipoprotein 3 by hepatic lipase. J Clin Invest 1984, 74: 2017–2023.

    PubMed  CAS  Google Scholar 

  28. Tall AR: Plasma cholesteryl ester transfer protein. J Lipid Res 1993, 34: 1255–1274.

    PubMed  CAS  Google Scholar 

  29. Mann CJ, Yen FT, Grant AM, et al.: Mechanism of plasma cholesteryl ester transfer in hypertriglyceridemia. J Clin Invest 1991, 88: 2059–2066.

    PubMed  CAS  Google Scholar 

  30. Nestel PJ: Relationship between plasma triglycerides and removal of chylomicrons. J Clin Invest 1964, 43: 943–949.

    PubMed  CAS  Google Scholar 

  31. Reardon MF, Fidge NH, Nestel PJ: Catabolism of very low density lipoprotein B apoprotein in man. J Clin Invest 1978, 61: 850–860.

    PubMed  CAS  Google Scholar 

  32. Schaefer EJ, Zech LA, Jenkins LL, et al.: Human apolipoprotein A-I and A-II metabolism. J Lipid Res 1982, 23: 850–862.

    PubMed  CAS  Google Scholar 

  33. Lechleitner M, Miesenbock G, Patsch JR: HDL cholesterol, triglycerides and coronary heart disease. Curr Opin Lipidol 1990, 1: 330–333.

    Article  Google Scholar 

  34. Ahmed M, Gannon MC, Nuttall FQ: Postprandial plasma glucose, insulin, glucagon and triglyceride responses to a standard diet in normal subjects. Diabetologia 1976, 12: 61–67.

    Article  PubMed  CAS  Google Scholar 

  35. Patsch JR, Karlin JB, Scott LW, et al.: Inverse relationship between blood levels of high density lipoprotein subfraction 2 and magnitude of postprandial lipemia. Proc Natl Acad Sci U S A 1983, 80: 1449–1453.

    Article  PubMed  CAS  Google Scholar 

  36. Brown SA, Chambless LE, Sharrett AR, et al.: Postprandial lipemia: reliability in an epidemiologic field study. Am J Epidemiol 1992, 136: 538–545.

    PubMed  CAS  Google Scholar 

  37. Patsch JR, Prasad S, Gotto AMJ, et al.: High-density lipoprotein2. Relationship of the plasma levels of this lipoprotein species to its composition, to the magnitude of postprandial lipemia, and to the activities of lipoprotein lipase and hepatic lipase. J Clin Invest 1987, 80: 341–347.

    PubMed  CAS  Google Scholar 

  38. Patsch JR, Miesenbock G, Hopferwieser T, et al.: Relation of triglyceride metabolism and coronary artery disease: studies in the postprandial state. Arterioscler Thromb 1992, 12: 1336–1345.

    PubMed  CAS  Google Scholar 

  39. Simons LA, Dwyer T, Simons J, et al.: Chylomicrons and chylomicron remnants in coronary artery disease: a case-control study. Atherosclerosis 1987, 65: 181–189.

    Article  PubMed  CAS  Google Scholar 

  40. Simpson HS, Williamson CM, Olivecrona T, et al.: Postprandial lipemia, fenofibrate and coronary artery disease. Atherosclerosis 1990, 85: 193–202.

    Article  PubMed  CAS  Google Scholar 

  41. Groot PH, van Stiphout WA, Krauss XH, et al.: Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease. Arterioscler Thromb 1991, 11: 653–662.

    PubMed  CAS  Google Scholar 

  42. Goodman DS, Blomstrand R, Werner B, et al.: The intestinal absorption and metabolism of vitamin A and beta-carotene in man. J Clin Invest 1966, 45: 1615–1623.

    PubMed  CAS  Google Scholar 

  43. Sharrett AR, Chambless LE, Heiss G, et al.: Association of postprandial triglyceride and retinyl palmitate responses with asymptomatic carotid artery atherosclerosis in middle-aged men and women: the Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler Thromb Vasc Biol 1995, 15: 2122–2129.

    PubMed  CAS  Google Scholar 

  44. Ginsberg HN, Jones J, Blaner WS, et al.: Association of postprandial triglyceride and retinyl palmitate responses with newly diagnosed exercise-induced myocardial ischemia in middle-aged men and women. Arterioscler Thromb Vasc Biol 1995, 15: 1829–1838.

    PubMed  CAS  Google Scholar 

  45. Ryu JE, Howard G, Craven TE, et al.: Postprandial triglyceridemia and carotid atherosclerosis in middle-aged subjects. Stroke 1992, 23: 823–828.

    PubMed  CAS  Google Scholar 

  46. Boquist S, Ruotolo G, Tang R, et al.: Alimentary lipemia, postprandial triglyceride-rich lipoproteins, and common carotid intima-media thickness in healthy, middle-aged men. Circulation 1999, 100: 723–728.

    PubMed  CAS  Google Scholar 

  47. Gofman JW, Young W, Tandy R: Ischemic heart disease, atherosclerosis, and longevity. Circulation 1966, 34: 679–697.

    PubMed  CAS  Google Scholar 

  48. Gordon DJ, Probstfield JL, Garrison RJ, et al.: High-density lipoprotein cholesterol and cardiovascular disease: four prospective American studies. Circulation 1989, 79: 8–15.

    PubMed  CAS  Google Scholar 

  49. Rubin EM, Krauss RM, Spangler EA, et al.: Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature 1991, 353: 265–267.

    Article  PubMed  CAS  Google Scholar 

  50. Plump AS, Scott CJ, Breslow JL: Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A 1994, 91: 9607–9611.

    Article  PubMed  CAS  Google Scholar 

  51. Duverger N, Kruth H, Emmanuel F, et al.: Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I-transgenic rabbits. Circulation 1996, 94: 713–717.

    PubMed  CAS  Google Scholar 

  52. Badimon JJ, Badimon L, Fuster V: Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest 1990, 85: 1234–1241.

    PubMed  CAS  Google Scholar 

  53. Stein O, Vanderhoek J, Stein Y: Cholesterol content and sterol synthesis in human skin fibroblasts and rat aortic smooth muscle cells exposed to lipoprotein-depleted serum and high-density apolipoprotein/phospholipid mixtures. Biochim Biophys Acta 1976, 431: 347–358.

    PubMed  CAS  Google Scholar 

  54. Acton S, Rigotti A, Landschulz KT, et al.: Identification of scavenger receptor SR-BI as a high density lipoprotein receptor [see comments]. Science 1996, 271: 518–520.

    Article  PubMed  CAS  Google Scholar 

  55. Fidge NH: High density lipoprotein receptors, binding proteins, and ligands. J Lipid Res 1999, 40: 187–201.

    PubMed  CAS  Google Scholar 

  56. Ha YC, Barter PJ: Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species. Comp Biochem Physiol [B] 1982, 71: 265–269.

    Article  CAS  Google Scholar 

  57. Tauber JP, Cheng J, Gospodarowicz D: Effect of high-and low-density lipoproteins on proliferation of cultured bovine vascular endothelial cells. J Clin Invest 1980, 66: 696–708.

    PubMed  CAS  Google Scholar 

  58. Parthasarathy S, Barnett J, Fong LG: High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Biochim Biophys Acta 1990, 1044: 275–283.

    PubMed  CAS  Google Scholar 

  59. Yui Y, Aoyama T, Morishita H, et al.: Serum prostacyclin stabilizing factor is identical to apolipoprotein A-I (Apo A-I): a novel function of Apo A-I. J Clin Invest 1988, 82: 803–807.

    PubMed  CAS  Google Scholar 

  60. Mahley R, Rall S: Type-III hyperlipoproteinemia (dysbetalipoproteinemia): the role of apolipoprotein E in normal and abnormal lipoprotein metabolism. In The Metabolic Basis of Inherited Disease, 6 edn. Edited by Scriver C, Beaudet A, Sly W, Valle D. New York: McGraw-Hill, 1989:1195–1214.

    Google Scholar 

  61. Yagyu H, Ishibashi S, Chen Z, et al.: Overexpressed lipoprotein lipase protects against atherosclerosis in apolipoprotein E knockout mice. J Lipid Res 1999, 40: 1677–1685.

    PubMed  CAS  Google Scholar 

  62. Zhang SH, Reddick RL, Burkey B, et al.: Diet-induced atherosclerosis in mice heterozygous and homozygous for apolipoprotein E gene disruption. J Clin Invest 1994, 94: 937–945.

    PubMed  CAS  Google Scholar 

  63. Brunzell JD, Hazzard WR, Porte DJ, et al.: Evidence for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man. J Clin Invest 1973, 52: 1578–1585.

    PubMed  CAS  Google Scholar 

  64. Havel RJ, Kane JP, Balasse EO, et al.: Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. J Clin Invest 1970, 49: 2017–2035.

    PubMed  CAS  Google Scholar 

  65. Craig WY, Nutik R, Cooper AD: Regulation of apoprotein synthesis and secretion in the human hepatoma Hep G2: the effect of exogenous lipoprotein. J Biol Chem 1988, 263: 13880–13890.

    PubMed  CAS  Google Scholar 

  66. Schneeman BO, Kotite L, Todd KM, et al.: Relationships between the responses of triglyceride-rich lipoproteins in blood plasma containing apolipoproteins B-48 and B-100 to a fat-containing meal in normolipidemic humans. Proc Natl Acad Sci U S A 1993, 90: 2069–2073.

    Article  PubMed  CAS  Google Scholar 

  67. Cohn JS, Johnson EJ, Millar JS, et al.: Contribution of apoB-48 and apoB-100 triglyceride-rich lipoproteins (TRL) to postprandial increases in the plasma concentration of TRL triglycerides and retinyl esters. J Lipid Res 1993, 34: 2033–2040.

    PubMed  CAS  Google Scholar 

  68. Karpe F, Steiner G, Olivecrona T, et al.: Metabolism of triglyceride-rich lipoproteins during alimentary lipemia. J Clin Invest 1993, 91: 748–758.

    PubMed  CAS  Google Scholar 

  69. Olsson U, Camejo G, Hurt-Camejo E, et al.: Possible functional interactions of apolipoprotein B-100 segments that associate with cell proteoglycans and the ApoB/E receptor. Arterioscler Thromb Vasc Biol 1997, 17: 149–155.

    PubMed  CAS  Google Scholar 

  70. Camejo G, Olofsson SO, Lopez F, et al.: Identification of Apo B-100 segments mediating the interaction of low-density lipoproteins with arterial proteoglycans. Arteriosclerosis 1988, 8: 368–377.

    PubMed  CAS  Google Scholar 

  71. Boren J, Olin K, Lee I, et al.: Identification of the principal proteoglycan-binding site in LDL: a single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J Clin Invest 1998, 101: 2658–2664.

    PubMed  CAS  Google Scholar 

  72. Anber V, Griffin BA, McConnell M, et al.: Influence of plasma lipid and LDL-subfraction profile on the interaction between low-density lipoprotein with human arterial wall proteoglycans. Atherosclerosis 1996, 124: 261–271.

    Article  PubMed  CAS  Google Scholar 

  73. Deckelbaum RJ, Granot E, Oschry Y, et al.: Plasma triglyceride determines structure-composition in low and high density lipoproteins. Arteriosclerosis 1984, 4: 225–231.

    PubMed  CAS  Google Scholar 

  74. McKeone BJ, Patsch JR, Pownall HJ: Plasma triglycerides determine low density lipoprotein composition, physical properties, and cell-specific binding in cultured cells. J Clin Invest 1993, 91: 1926–1933.

    PubMed  CAS  Google Scholar 

  75. de Graaf J, Hendriks JC, Demacker PN, et al.: Identification of multiple dense LDL subfractions with enhanced susceptibility to in vitro oxidation among hypertriglyceridemic subjects: normalization after clofibrate treatment. Arterioscler Thromb 1993, 13: 712–719.

    PubMed  Google Scholar 

  76. Sattar N, Petrie JR, Jaap AJ: The atherogenic lipoprotein phenotype and vascular endothelial dysfunction. Atherosclerosis 1998, 138: 229–235.

    Article  PubMed  CAS  Google Scholar 

  77. Lechleitner M, Hoppichler F, Foger B, et al.: Low-density lipoproteins of the postprandial state induce cellular cholesteryl ester accumulation in macrophages. Arterioscler Thromb 1994, 14: 1799–1807.

    PubMed  CAS  Google Scholar 

  78. Austin MA, King MC, Vranizan KM, et al.: Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk [see comments]. Circulation 1990, 82: 495–506.

    PubMed  CAS  Google Scholar 

  79. Miesenbock G, Holzl B, Foger B, et al.: Heterozygous lipoprotein lipase deficiency due to a missense mutation as the cause of impaired triglyceride tolerance with multiple lipoprotein abnormalities. J Clin Invest 1993, 91: 448–455.

    PubMed  CAS  Google Scholar 

  80. Veniant MM, Pierotti V, Newland D, et al.: Susceptibility to atherosclerosis in mice expressing exclusively apolipoprotein B48 or apolipoprotein B100. J Clin Invest 1997, 100: 180–188.

    PubMed  CAS  Google Scholar 

  81. Plotnick GD, Corretti MC, Vogel RA: Effect of antioxidant vitamins on the transient impairment of endothelium-dependent brachial artery vasoactivity following a single high-fat meal [see comments]. JAMA 1997, 278: 1682–1686.

    Article  PubMed  CAS  Google Scholar 

  82. Evans M, Khan N, Rees A: Diabetic dyslipidaemia and coronary heart disease: new perspectives. Curr Opin Lipidol 1999, 10: 387–391.

    Article  PubMed  CAS  Google Scholar 

  83. Fruchart JC, Duriez P, Staels B: Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 1999, 10: 245–257.

    Article  PubMed  CAS  Google Scholar 

  84. Simpson HC, Mann JI, Meade TW, et al.: Hypertriglyceridaemia and hypercoagulability. Lancet 1983, 1: 786–790.

    Article  PubMed  CAS  Google Scholar 

  85. Miller GJ, Martin JC, Mitropoulos KA, et al.: Plasma factor VII is activated by postprandial triglyceridaemia, irrespective of dietary fat composition. Atherosclerosis 1991, 86: 163–171.

    Article  PubMed  CAS  Google Scholar 

  86. Broijersen A, Karpe F, Hamsten A, et al.: Alimentary lipemia enhances the membrane expression of platelet P-selectin without affecting other markers of platelet activation. Atherosclerosis 1998, 137: 107–113.

    Article  PubMed  CAS  Google Scholar 

  87. Hamsten A, Wiman B, de Faire U, et al.: Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med 1985, 313: 1557–1563.

    Article  PubMed  CAS  Google Scholar 

  88. Stiko-Rahm A, Wiman B, Hamsten A, et al.: Secretion of plasminogen activator inhibitor-1 from cultured human umbilical vein endothelial cells is induced by very low-density lipoprotein. Arteriosclerosis 1990, 10: 1067–1073.

    PubMed  CAS  Google Scholar 

  89. Sharrett AR, Patsch W, Sorlie PD, et al.: Associations of lipoprotein cholesterols, apolipoproteins A-I and B, and triglycerides with carotid atherosclerosis and coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler Thromb 1994, 14: 1098–1104.

    PubMed  CAS  Google Scholar 

  90. Inazu A, Brown ML, Hesler CB, et al.: Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med 1990, 323: 1234–1238.

    Article  PubMed  CAS  Google Scholar 

  91. Ritsch A, Drexel H, Amann FW, et al.: Deficiency of cholesteryl ester transfer protein: description of the molecular defect and the dissociation of cholesteryl ester and triglyceride transport in plasma. Arterioscler Thromb Vasc Biol 1997, 17: 3433–3441.

    PubMed  CAS  Google Scholar 

  92. Foger B, Santamarina-Fojo S, Shamburek RD, et al.: Plasma phospholipid transfer protein: adenovirus-mediated overexpression in mice leads to decreased plasma high-density lipoprotein (HDL) and enhanced hepatic uptake of phospholipids and cholesteryl esters from HDL. J Biol Chem 1997, 272: 27393–27400.

    Article  PubMed  CAS  Google Scholar 

  93. Merrill JR, Holly RG, Anderson RL, et al.: Hyperlipemic response of young trained and untrained men after a high fat meal. Arteriosclerosis 1989, 9: 217–223.

    PubMed  CAS  Google Scholar 

  94. Williams CM: Postprandial lipid metabolism: effects of dietary fatty acids. Proc Nutr Soc 1997, 56: 679–692.

    Article  PubMed  CAS  Google Scholar 

  95. Steinberg D, Pearson TA, Kuller LH: Alcohol and atherosclerosis. Ann Intern Med 1991, 114: 967–976.

    PubMed  CAS  Google Scholar 

  96. Mero N, Syvanne M, Eliasson B, et al.: Postprandial elevation of ApoB-48-containing triglyceride-rich particles and retinyl esters in normolipemic males who smoke. Arterioscler Thromb Vasc Biol 1997, 17: 2096–2102.

    PubMed  CAS  Google Scholar 

  97. Cohn JS, McNamara JR, Cohn SD, et al.: Postprandial plasma lipoprotein changes in human subjects of different ages. J Lipid Res 1988, 29: 469–479.

    PubMed  CAS  Google Scholar 

  98. Couillard C, Bergeron N, Prud’homme D, et al.: Gender difference in postprandial lipemia: importance of visceral adipose tissue accumulation. Arterioscler Thromb Vasc Biol 1999, 19: 2448–2455.

    PubMed  CAS  Google Scholar 

  99. van Beek AP, de Ruijter-Heijstek FC, Erkelens DW, et al.: Menopause is associated with reduced protection from postprandial lipemia. Arterioscler Thromb Vasc Biol 1999, 19: 2737–2741.

    PubMed  Google Scholar 

  100. Weintraub M, Grosskopf I, Charach G, et al.: Hormone replacement therapy enhances postprandial lipid metabolism in postmenopausal women. Metabolism 1999, 48: 1193–1196.

    Article  PubMed  CAS  Google Scholar 

  101. Austin MA, King MC, Vranizan KM, et al.: Inheritance of low-density lipoprotein subclass patterns: results of complex segregation analysis. Am J Hum Genet 1988, 43: 838–846.

    PubMed  CAS  Google Scholar 

  102. Nishina PM, Johnson JP, Naggert JK, et al.: Linkage of atherogenic lipoprotein phenotype to the low-density lipoprotein receptor locus on the short arm of chromosome 19. Proc Natl Acad Sci U S A 1992, 89: 708–712.

    Article  PubMed  CAS  Google Scholar 

  103. Griffin BA, Freeman DJ, Tait GW, et al.: Role of plasma triglyceride in the regulation of plasma low density lipoprotein (LDL) subfractions: relative contribution of small, dense LDL to coronary heart disease risk. Atherosclerosis 1994, 106: 241–253.

    Article  PubMed  CAS  Google Scholar 

  104. Tan CE, Foster L, Caslake MJ, et al.: Relations between plasma lipids and postheparin plasma lipases and VLDL and LDL subfraction patterns in normolipemic men and women. Arterioscler Thromb Vasc Biol 1995, 15: 1839–1848.

    PubMed  CAS  Google Scholar 

  105. Nickerson DA, Taylor SL, Weiss KM, et al.: DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene [see comments]. Nat Genet 1998, 19: 233–240.

    Article  PubMed  CAS  Google Scholar 

  106. Reymer PW, Gagne E, Groenemeyer BE, et al.: A lipoprotein lipase mutation (Asn291Ser) is associated with reduced HDL cholesterol levels in premature atherosclerosis [see comments]. Nat Genet 1995, 10: 28–34.

    Article  PubMed  CAS  Google Scholar 

  107. Syvanne M, Antikainen M, Ehnholm S, et al.: Heterozygosity for Asn291Ser mutation in the lipoprotein lipase gene in two Finnish pedigrees: effect of hyperinsulinemia on the expression of hypertriglyceridemia. J Lipid Res 1996, 37: 727–738.

    PubMed  CAS  Google Scholar 

  108. Mero N, Suurinkeroinen L, Syvanne M, et al.: Delayed clearance of postprandial large TG-rich particles in normolipidemic carriers of LPL Asn291Ser gene variant. J Lipid Res 1999, 40: 1663–1670.

    PubMed  CAS  Google Scholar 

  109. Gerdes C, Fisher RM, Nicaud V, et al.: Lipoprotein lipase variants D9N and N291S are associated with increased plasma triglyceride and lower high-density lipoprotein cholesterol concentrations: studies in the fasting and postprandial states: the European Atherosclerosis Research Studies. Circulation 1997, 96: 733–740.

    PubMed  CAS  Google Scholar 

  110. Galton DJ: Common genetic determinants of dyslipidemia: the hypertriglyceridemia/low-high-density lipoprotein syndrome. J Cardiovasc Pharmacol 1995, 25 Suppl 4: S35-S40.

    Google Scholar 

  111. Jemaa R, Tuzet S, Portos C, et al.: Lipoprotein lipase gene polymorphisms: associations with hypertriglyceridemia and body mass index in obese people. Int J Obes Relat Metab Disord 1995, 19: 270–274.

    PubMed  CAS  Google Scholar 

  112. Groenemeijer BE, Hallman MD, Reymer PW, et al.: Genetic variant showing a positive interaction with beta-blocking agents with a beneficial influence on lipoprotein lipase activity, HDL cholesterol, and triglyceride levels in coronary artery disease patients: the Ser447-stop substitution in the lipoprotein lipase gene. REGRESS Study Group [see comments]. Circulation 1997, 95: 2628–2635.

    PubMed  CAS  Google Scholar 

  113. Zhang H, Henderson H, Gagne SE, et al.: Common sequence variants of lipoprotein lipase: standardized studies of in vitro expression and catalytic function. Biochim Biophys Acta 1996, 1302: 159–166.

    PubMed  Google Scholar 

  114. Humphries SE, Nicaud V, Margalef J, et al.: Lipoprotein lipase gene variation is associated with a paternal history of premature coronary artery disease and fasting and postprandial plasma triglycerides: the European Atherosclerosis Research Study (EARS). Arterioscler Thromb Vasc Biol 1998, 18: 526–534.

    PubMed  CAS  Google Scholar 

  115. Talmud PJ, Hall S, Holleran S, et al.: LPL promoter -93T/G transition influences fasting and postprandial plasma triglycerides response in African-Americans and Hispanics. J Lipid Res 1998, 39: 1189–1196.

    PubMed  CAS  Google Scholar 

  116. Weintraub MS, Eisenberg S, Breslow JL. Dietary fat clearance in normal subjects is regulated by genetic variation in apolipoprotein E. J Clin Invest 1987, 80: 1571–1577.

    PubMed  CAS  Google Scholar 

  117. Boerwinkle E, Brown S, Sharrett AR, et al.: Apolipoprotein E polymorphism influences postprandial retinyl palmitate but not triglyceride concentrations. Am J Hum Genet 1994, 54: 341–360.

    PubMed  CAS  Google Scholar 

  118. Dallongeville J, Tiret L, Visvikis S, et al.: Effect of apo E phenotype on plasma postprandial triglyceride levels in young male adults with and without a familial history of myocardial infarction: the EARS II study: European Atherosclerosis Research Study. Atherosclerosis 1999, 145: 381–388.

    Article  PubMed  CAS  Google Scholar 

  119. Bergeron N, Havel RJ. Prolonged postprandial responses of lipids and apolipoproteins in triglyceride-rich lipoproteins of individuals expressing an apolipoprotein epsilon 4 allele. J Clin Invest 1996, 97: 65–72.

    PubMed  CAS  Google Scholar 

  120. Brown AJ, Roberts DC: The effect of fasting triacylglyceride concentration and apolipoprotein E polymorphism on postprandial lipemia. Arterioscler Thromb 1991, 11: 1737–1744.

    PubMed  CAS  Google Scholar 

  121. Schneider WJ, Kovanen PT, Brown MS, et al.: Familial dysbetalipoproteinemia: abnormal binding of mutant apoprotein E to low density lipoprotein receptors of human fibroblasts and membranes from liver and adrenal of rats, rabbits, and cows. J Clin Invest 1981, 68: 1075–1085.

    PubMed  CAS  Google Scholar 

  122. Cumming AM, Robertson FW. Polymorphism at the apoprotein-E locus in relation to risk of coronary disease. Clin Genet 1984, 25: 310–313.

    Article  PubMed  CAS  Google Scholar 

  123. Tiret L, De Knijff P, Menzel HJ, et al.: ApoE polymorphism and predisposition to coronary heart disease in youths of different European populations: the EARS Study: European Atherosclerosis Research Study. Arterioscler Thromb 1994, 14: 1617–1624.

    PubMed  CAS  Google Scholar 

  124. Peacock RE, Karpe F, Talmud PJ, et al.: Common variation in the gene for apolipoprotein B modulates postprandial lipoprotein metabolism: a hypothesis generating study. Atherosclerosis 1995, 116: 135–145.

    Article  PubMed  CAS  Google Scholar 

  125. Byrne CD, Wareham NJ, Mistry PK, et al.: The association between free fatty acid concentrations and triglyceride-rich lipoproteins in the post-prandial state is altered by a common deletion polymorphism of the apo B signal peptide. Atherosclerosis 1996, 127: 35–42.

    Article  PubMed  CAS  Google Scholar 

  126. Regis-Bailly A, Fournier B, Steinmetz J, et al.: Apo B signal peptide insertion/deletion polymorphism is involved in postprandial lipoparticles’ responses. Atherosclerosis 1995, 118: 23–34.

    Article  PubMed  CAS  Google Scholar 

  127. Wang CS, McConathy WJ, Kloer HU, et al.: Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest 1985, 75: 384–390.

    PubMed  CAS  Google Scholar 

  128. Ebara T, Ramakrishnan R, Steiner G, et al.: Chylomicronemia due to apolipoprotein CIII overexpression in apolipoprotein E-null mice: apolipoprotein CIII-induced hypertriglyceridemia is not mediated by effects on apolipoprotein E. J Clin Invest 1997, 99: 2672–2681.

    PubMed  CAS  Google Scholar 

  129. Aalto-Setala K, Fisher EA, Chen X, et al.: Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice: diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles. J Clin Invest 1992, 90: 1889–1900.

    PubMed  CAS  Google Scholar 

  130. Rees A, Shoulders CC, Stocks J, et al.: DNA polymorphism adjacent to human apoprotein A-1 gene: relation to hypertriglyceridaemia. Lancet 1983, 1: 444–446.

    Article  PubMed  CAS  Google Scholar 

  131. Dammerman M, Sandkuijl LA, Halaas JL, et al.: An apolipoprotein CIII haplotype protective against hypertriglyceridemia is specified by promoter and 3′ untranslated region polymorphisms. Proc Natl Acad Sci U S A 1993, 90: 4562–4566.

    Article  PubMed  CAS  Google Scholar 

  132. Surguchov AP, Page GP, Smith L, et al.: Polymorphic markers in apolipoprotein C-III gene flanking regions and hypertriglyceridemia. Arterioscler Thromb Vasc Biol 1996, 16: 941–947.

    PubMed  CAS  Google Scholar 

  133. Li WW, Dammerman MM, Smith JD, et al.: Common genetic variation in the promoter of the human apo CIII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia [see comments]. J Clin Invest 1995, 96: 2601–2605.

    PubMed  CAS  Google Scholar 

  134. Waterworth DM, Ribalta J, Nicaud V, et al.: ApoCIII gene variants modulate postprandial response to both glucose and fat tolerance tests. Circulation 1999, 99: 1872–1877.

    PubMed  CAS  Google Scholar 

  135. Esterbauer H, Hell E, Krempler F, et al.: Allele-specific differences in apolipoprotein C-III mRNA expression in human liver. Clin Chem 1999, 45: 331–339.

    PubMed  CAS  Google Scholar 

  136. Rotter JI, Bu X, Cantor RM, et al.: Multilocus genetic determinants of LDL particle size in coronary artery disease families. Am J Hum Genet 1996, 58: 585–594.

    PubMed  CAS  Google Scholar 

  137. Agren JJ, Valve R, Vidgren H, et al.: Postprandial lipemic response is modified by the polymorphism at codon 54 of the fatty acid-binding protein 2 gene [published erratum appears in Arterioscler Thromb Vasc Biol 1999 Jan, 19(1):186]. Arterioscler Thromb Vasc Biol 1998, 18: 1606–1610.

    PubMed  CAS  Google Scholar 

  138. Baier LJ, Bogardus C, Sacchettini JC. A polymorphism in the human intestinal fatty acid binding protein alters fatty acid transport across Caco-2 cells. J Biol Chem 1996, 271: 10892–10896.

    Article  PubMed  CAS  Google Scholar 

  139. Baier LJ, Sacchettini JC, Knowler WC, et al.: An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J Clin Invest 1995, 95: 1281–1287.

    PubMed  CAS  Google Scholar 

  140. Foger B, Konigsrainer A, Ritsch A, et al.: Pancreas transplantation modulates reverse cholesterol transport. Transpl Int 1999, 12: 360–364.

    Article  PubMed  CAS  Google Scholar 

  141. Foger B, Konigsrainer A, Palos G, et al.: Effects of pancreas transplantation on distribution and composition of plasma lipoproteins. Metabolism 1996, 45: 856–861.

    Article  PubMed  CAS  Google Scholar 

  142. Farquhar JW, Frank A, Gross RC, et al.: Glucose, insulin, and triglyceride responses to high and low carbohydrate diets in man. J Clin Invest 1966, 45: 1648–1656.

    PubMed  CAS  Google Scholar 

  143. Reaven GM, Lerner RL, Stern MP, et al.: Role of insulin in endogenous hypertriglyceridemia. J Clin Invest 1967, 46: 1756–1767.

    PubMed  CAS  Google Scholar 

  144. Patsch W, Franz S, Schonfeld G. Role of insulin in lipoprotein secretion by cultured rat hepatocytes. J Clin Invest 1983, 71: 1161–1174.

    PubMed  CAS  Google Scholar 

  145. Patsch W, Gotto AMJ, Patsch JR. Effects of insulin on lipoprotein secretion in rat hepatocyte cultures: the role of the insulin receptor. J Biol Chem 1986, 261: 9603–9606.

    PubMed  CAS  Google Scholar 

  146. Lewis GF, Uffelman KD, Szeto LW, et al.: Interaction between free fatty acids and insulin in the acute control of very low-density lipoprotein production in humans. J Clin Invest 1995, 95: 158–166.

    PubMed  CAS  Google Scholar 

  147. Lin MC, Gordon D, Wetterau JR: Microsomal triglyceride transfer protein (MTP) regulation in HepG2 cells: insulin negatively regulates MTP gene expression. J Lipid Res 1995, 36: 1073–1081.

    PubMed  CAS  Google Scholar 

  148. Wetterau JR, Aggerbeck LP, Bouma ME, et al.: Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science 1992, 258: 999–1001.

    Article  PubMed  CAS  Google Scholar 

  149. Phung TL, Roncone A, Jensen KL, et al.: Phosphoinositide 3-kinase activity is necessary for insulin-dependent inhibition of apolipoprotein B secretion by rat hepatocytes and localizes to the endoplasmic reticulum. J Biol Chem 1997, 272: 30693–30702.

    Article  PubMed  CAS  Google Scholar 

  150. Cianflone KM, Sniderman AD, Walsh MJ, et al.: Purification and characterization of acylation stimulating protein. J Biol Chem 1989, 264: 426–430.

    PubMed  CAS  Google Scholar 

  151. Baldo A, Sniderman AD, St-Luce S, et al.: The adipsin-acylation stimulating protein system and regulation of intracellular triglyceride synthesis. J Clin Invest 1993, 92: 1543–1547.

    PubMed  CAS  Google Scholar 

  152. Scantlebury T, Maslowska M, Cianflone K: Chylomicron-specific enhancement of acylation stimulating protein and precursor protein C3 production in differentiated human adipocytes. J Biol Chem 1998, 273: 20903–20909.

    Article  PubMed  CAS  Google Scholar 

  153. Cianflone KM, Maslowska MH, Sniderman AD. Impaired response of fibroblasts from patients with hyperapobetalipoproteinemia to acylation-stimulating protein. J Clin Invest 1990, 85: 722–730.

    Article  PubMed  CAS  Google Scholar 

  154. Murray I, Sniderman AD, Cianflone K: Enhanced triglyceride clearance with intraperitoneal human acylation stimulating protein in C57BL/6 mice. Am J Physiol 1999, 277: E474-E480.

    PubMed  CAS  Google Scholar 

  155. Murray I, Sniderman AD, Cianflone K: Mice lacking acylation stimulating protein (ASP) have delayed postprandial triglyceride clearance. J Lipid Res 1999, 40: 1671–1676.

    PubMed  CAS  Google Scholar 

  156. Wetsel RA, Kildsgaard J, Zsigmond E, et al.: Genetic deficiency of acylation stimulating protein (ASP(C3ades-Arg)) does not cause hyperapobetalipoproteinemia in mice. J Biol Chem 1999, 274: 19429–19433.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patsch, W., Esterbauer, H., Föger, B. et al. Postprandial lipemia and coronary risk. Curr Atheroscler Rep 2, 232–242 (2000). https://doi.org/10.1007/s11883-000-0025-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-000-0025-0

Keywords

Navigation