Skip to main content

Advertisement

Log in

B Cell Disorders in Children: Part II

  • Pediatric Allergy and Immunology (W Dolen, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

B cell disorders result in decreased levels or function of immunoglobulins in an individual. Genetic mutations have been reported in a variety of B cell disorders. This review, in follow-up to a previous review, describes some rare B cell disorders as well as their known underlying genetic etiologies.

Recent Findings

Genetic studies identify and permit precise classification of an increasing number of B cell disorders, leading to a greater understanding of B cell development and function.

Summary

The B cell disorders are rare diseases. While clinicians are most familiar with X-linked agammaglobulinemia and so-called common variable immunodeficiency (CVID), there are many causes of hypogammaglobulinemia. Genetic testing provides a specific diagnosis, offers useful information for genetic counseling, and can identify previously unrecognized B cell disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. •• Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020;40:24–64. https://doi.org/10.1007/s10875-019-00737-xThis is the most recent biannual listing or primary immunodeficiency diseases recognized by the IUIS expert committee.

  2. •• Gilchrist B, Dolen WK. B cell disorders in children- part 1. Curr Allergy Asthma Rep. 2020;20:52. https://doi.org/10.1007/s11882-020-00938-0This is the companion (Part 1) review article to the present (Part 2) review article.

  3. Wang HY, Ma CA, Zhao Y, Fan X, Zhou Q, Edmonds P, et al. Antibody deficiency associated with an inherited autosomal dominant mutation in TWEAK. Proc Natl Acad Sci U S A. 2013;110(13):5127–32. https://doi.org/10.1073/pnas.1221211110.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hou TZ, Verma N, Wanders J, Kennedy A, Soskic B, Janman D, et al. Identifying functional defects in patients with immune dysregulation due to LRBA and CTLA-4 mutations. Blood. 2017;129(11):1458–68. https://doi.org/10.1182/blood-2016-10-745174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332(6029):600–3. https://doi.org/10.1126/science.1202947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 2014;345(6204):1623–7. https://doi.org/10.1126/science.1255904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170(4):605–35. https://doi.org/10.1016/j.cell.2017.07.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coulter TI, Chandra A, Bacon CM, Babar J, Curtis J, Screaton N et al. Clinical spectrum and features of activated phosphoinositide 3-kinase delta syndrome: a large patient cohort study. J Allergy Clin Immunol. 2017;139(2):597–606.e4. doi:https://doi.org/10.1016/j.jaci.2016.06.021.

  9. Elkaim E, Neven B, Bruneau J, Mitsui-Sekinaka K, Stanislas A, Heurtier L et al. Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase delta syndrome 2: a cohort study. J Allergy Clin Immunol. 2016;138(1):210–8.e9. doi:https://doi.org/10.1016/j.jaci.2016.03.022.

  10. Deau MC, Heurtier L, Frange P, Suarez F, Bole-Feysot C, Nitschke P, et al. A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest. 2014;124(9):3923–8. https://doi.org/10.1172/jci75746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Irish JM, Czerwinski DK, Nolan GP, Levy R. Kinetics of B cell receptor signaling in human B cell subsets mapped by phosphospecific flow cytometry. J Immunol. 2006;177(3):1581–9. https://doi.org/10.4049/jimmunol.177.3.1581.

    Article  CAS  PubMed  Google Scholar 

  12. Compeer EB, Janssen W, van Royen-Kerkhof A, van Gijn M, van Montfrans JM, Boes M. Dysfunctional BLK in common variable immunodeficiency perturbs B-cell proliferation and ability to elicit antigen-specific CD4+ T-cell help. Oncotarget. 2015;6(13):10759–71. https://doi.org/10.18632/oncotarget.3577.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kuroki Y, Suzuki Y, Chyo H, Hata A, Matsui I. A new malformation syndrome of long palpebral fissures, large ears, depressed nasal tip, and skeletal anomalies associated with postnatal dwarfism and mental retardation. J Pediatr. 1981;99(4):570–3. https://doi.org/10.1016/s0022-3476(81)80256-9.

    Article  CAS  PubMed  Google Scholar 

  14. Niikawa N, Matsuura N, Fukushima Y, Ohsawa T, Kajii T. Kabuki make-up syndrome: a syndrome of mental retardation, unusual facies, large and protruding ears, and postnatal growth deficiency. J Pediatr. 1981;99(4):565–9. https://doi.org/10.1016/s0022-3476(81)80255-7.

    Article  CAS  PubMed  Google Scholar 

  15. Lederer D, Grisart B, Digilio MC, Benoit V, Crespin M, Ghariani SC, et al. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with kabuki syndrome. Am J Hum Genet. 2012;90(1):119–24. https://doi.org/10.1016/j.ajhg.2011.11.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42(9):790–3. https://doi.org/10.1038/ng.646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ansari KI, Mandal SS. Mixed lineage leukemia: roles in gene expression, hormone signaling and mRNA processing. FEBS J. 2010;277(8):1790–804. https://doi.org/10.1111/j.1742-4658.2010.07606.x.

    Article  CAS  PubMed  Google Scholar 

  18. Smith E, Lin C, Shilatifard A. The super elongation complex (SEC) and MLL in development and disease. Genes Dev. 2011;25(7):661–72. https://doi.org/10.1101/gad.2015411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science. 2007;318(5849):447–50. https://doi.org/10.1126/science.1149042.

    Article  CAS  PubMed  Google Scholar 

  20. Lindsley AW, Saal HM, Burrow TA, Hopkin RJ, Shchelochkov O, Khandelwal P, et al. Defects of B-cell terminal differentiation in patients with type-1 Kabuki syndrome. J Allergy Clin Immunol. 2016;137(1):179–87. e10. https://doi.org/10.1016/j.jaci.2015.06.002.

    Article  CAS  PubMed  Google Scholar 

  21. Hoffman JD, Ciprero KL, Sullivan KE, Kaplan PB, McDonald-McGinn DM, Zackai EH, et al. Immune abnormalities are a frequent manifestation of Kabuki syndrome. Am J Med Genet A. 2005;135(3):278–81. https://doi.org/10.1002/ajmg.a.30722.

    Article  PubMed  Google Scholar 

  22. Leven EA, Maffucci P, Ochs HD, Scholl PR, Buckley RH, Fuleihan RL, et al. Hyper IgM syndrome: a report from the USIDNET registry. J Clin Immunol. 2016;36(5):490–501. https://doi.org/10.1007/s10875-016-0291-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell. 2000;102(5):565–75. https://doi.org/10.1016/s0092-8674(00)00079-9.

    Article  CAS  PubMed  Google Scholar 

  24. Imai K, Zhu Y, Revy P, Morio T, Mizutani S, Fischer A, et al. Analysis of class switch recombination and somatic hypermutation in patients affected with autosomal dominant hyper-IgM syndrome type 2. Clin Immunol. 2005;115(3):277–85. https://doi.org/10.1016/j.clim.2005.02.003.

    Article  CAS  PubMed  Google Scholar 

  25. Ferrari S, Giliani S, Insalaco A, Al-Ghonaium A, Soresina AR, Loubser M, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A. 2001;98(22):12614–9. https://doi.org/10.1073/pnas.221456898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kutukculer N, Moratto D, Aydinok Y, Lougaris V, Aksoylar S, Plebani A, et al. Disseminated cryptosporidium infection in an infant with hyper-IgM syndrome caused by CD40 deficiency. J Pediatr. 2003;142(2):194–6. https://doi.org/10.1067/mpd.2003.41.

    Article  PubMed  Google Scholar 

  27. Imai K, Catalan N, Plebani A, Marodi L, Sanal O, Kumaki S, et al. Hyper-IgM syndrome type 4 with a B lymphocyte-intrinsic selective deficiency in Ig class-switch recombination. J Clin Invest. 2003;112:136–42.

    Article  CAS  Google Scholar 

  28. Smahi A, Courtois G, Vabres P, Yamaoka S, Heuertz S, Munnich A, et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature. 2000;405(6785):466–72. https://doi.org/10.1038/35013114.

    Article  CAS  PubMed  Google Scholar 

  29. Zonana J, Elder ME, Schneider LC, Orlow SJ, Moss C, Golabi M, et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet. 2000;67(6):1555–62. https://doi.org/10.1086/316914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Good RA, Varco RL. A clinical and experimental study of agammaglobulinemia. J Lancet. 1955;75(6):245–71.

    CAS  PubMed  Google Scholar 

  31. Kelesidis T, Yang O. Good's syndrome remains a mystery after 55 years: a systematic review of the scientific evidence. Clin Immunol. 2010;135(3):347–63. https://doi.org/10.1016/j.clim.2010.01.006.

    Article  CAS  PubMed  Google Scholar 

  32. Yel L. Selective IgA deficiency. J Clin Immunol. 2010;30(1):10–6. https://doi.org/10.1007/s10875-009-9357-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Agarwal S, Mayer L. Pathogenesis and treatment of gastrointestinal disease in antibody deficiency syndromes. J Allergy Clin Immunol. 2009;124(4):658–64. https://doi.org/10.1016/j.jaci.2009.06.018.

    Article  CAS  PubMed  Google Scholar 

  34. Janzi M, Kull I, Sjoberg R, Wan J, Melen E, Bayat N, et al. Selective IgA deficiency in early life: association to infections and allergic diseases during childhood. Clin Immunol. 2009;133(1):78–85. https://doi.org/10.1016/j.clim.2009.05.014.

    Article  CAS  PubMed  Google Scholar 

  35. Wang N, Shen N, Vyse TJ, Anand V, Gunnarson I, Sturfelt G, et al. Selective IgA deficiency in autoimmune diseases. Mol Med. 2011;17(11–12):1383–96. https://doi.org/10.2119/molmed.2011.00195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bagheri Y, Sanaei R, Yazdani R, Shekarabi M, Falak R, Mohammadi J, et al. The heterogeneous pathogenesis of selective immunoglobulin a deficiency. Int Arch Allergy Immunol. 2019;179(3):231–46. https://doi.org/10.1159/000499044.

    Article  CAS  PubMed  Google Scholar 

  37. Aghamohammadi A, Mohammadi J, Parvaneh N, Rezaei N, Moin M, Espanol T, et al. Progression of selective IgA deficiency to common variable immunodeficiency. Int Arch Allergy Immunol. 2008;147(2):87–92. https://doi.org/10.1159/000135694.

    Article  CAS  PubMed  Google Scholar 

  38. Sala P, Colatutto A, Fabbro D, Mariuzzi L, Marzinotto S, Toffoletto B, et al. Immunoglobulin K light chain deficiency: a rare, but probably underestimated, humoral immune defect. Eur J Med Genet. 2016;59(4):219–22. https://doi.org/10.1016/j.ejmg.2016.02.003.

    Article  PubMed  Google Scholar 

  39. Stavnezer-Nordgren J, Kekish O, Zegers BJ. Molecular defects in a human immunoglobulin kappa chain deficiency. Science. 1985;230(4724):458–61. https://doi.org/10.1126/science.3931219.

    Article  CAS  PubMed  Google Scholar 

  40. Nadel B, Tang A, Lugo G, Love V, Escuro G, Feeney AJ. Decreased frequency of rearrangement due to the synergistic effect of nucleotide changes in the heptamer and nonamer of the recombination signal sequence of the V kappa gene A2b, which is associated with increased susceptibility of Navajos to Haemophilus influenzae type b disease. J Immunol. 1998;161(11):6068–73.

    CAS  PubMed  Google Scholar 

  41. Feeney AJ, Atkinson MJ, Cowan MJ, Escuro G, Lugo G. A defective Vkappa A2 allele in Navajos which may play a role in increased susceptibility to haemophilus influenzae type b disease. J Clin Invest. 1996;97(10):2277–82. https://doi.org/10.1172/jci118669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Padyukov L, Hahn-Zoric M, Blomqvist SR, Ulanova M, Welch SG, Feeney AJ, et al. Distribution of human kappa locus IGKV2-29 and IGKV2D-29 alleles in Swedish Caucasians and Hong Kong Chinese. Immunogenetics. 2001;53(1):22–30. https://doi.org/10.1007/s002510000291.

    Article  CAS  PubMed  Google Scholar 

  43. Ocampo CJ, Peters AT. Antibody deficiency in chronic rhinosinusitis: epidemiology and burden of illness. Am J Rhinol Allergy. 2013;27(1):34–8. https://doi.org/10.2500/ajra.2013.27.3831.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schatorje EJ, de Jong E, van Hout RW, Garcia Vivas Y, de Vries E. The challenge of immunoglobulin-G subclass deficiency and specific polysaccharide antibody deficiency--a Dutch pediatric cohort study. J Clin Immunol. 2016;36(2):141–8. https://doi.org/10.1007/s10875-016-0236-y.

    Article  CAS  PubMed  Google Scholar 

  45. Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. The 2017 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol. 2018;38(1):129–43. https://doi.org/10.1007/s10875-017-0465-8.

    Article  PubMed  Google Scholar 

  46. Perez E, Bonilla FA, Orange JS, Ballow M. Specific antibody deficiency: controversies in diagnosis and management. Front Immunol. 2017;8:586. https://doi.org/10.3389/fimmu.2017.00586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ameratunga R, Ahn Y, Steele R, Woon ST. Transient hypogammaglobulinaemia of infancy: many patients recover in adolescence and adulthood. Clin Exp Immunol. 2019;198(2):224–32. https://doi.org/10.1111/cei.13345.

    Article  CAS  PubMed  Google Scholar 

  48. Seidel MG, Kindle G, Gathmann B, Quinti I, Buckland M, van Montfrans J, et al. The European Society for Immunodeficiencies (ESID) registry working definitions for the clinical diagnosis of inborn errors of immunity. J Allergy Clin Immunol Pract. 2019;7(6):1763–70. https://doi.org/10.1016/j.jaip.2019.02.004.

    Article  PubMed  Google Scholar 

  49. Duse M, Iacobini M, Leonardi L, Smacchia P, Antonetti L, Giancane G. Transient hypogammaglobulinemia of infancy: intravenous immunoglobulin as first line therapy. Int J Immunopathol Pharmacol. 2010;23(1):349–53. https://doi.org/10.1177/039463201002300134.

    Article  CAS  PubMed  Google Scholar 

  50. Online Mendelian Inheritance in Man, OMIM® [database on the Internet]. McKusick-Nathans Institute of Genetic Medicine. Available from: https://omim.org. Accessed: 5 July 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William K. Dolen.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Allergy and Immunology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griffin, D.D., Dolen, W.K. B Cell Disorders in Children: Part II. Curr Allergy Asthma Rep 20, 64 (2020). https://doi.org/10.1007/s11882-020-00963-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-020-00963-z

Keywords

Navigation