Skip to main content

Advertisement

Log in

The Role of Macrolides in Chronic Rhinosinusitis (CRSsNP and CRSwNP)

  • Rhinosinusitis (J Mullol, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We assess the literature on the pharmacokinetics, indications, important considerations, and effectiveness of long-term, low-dose macrolide antibiotics in chronic rhinosinusitis (CRS).

Recent Findings

The key to effective implementation of macrolide therapy in CRS is appropriate patient selection. Macrolides have demonstrated the most benefit in Th1-mediated non-eosinophilic CRS when used for durations of at least 3 months.

Summary

Macrolide antibiotics have demonstrated great benefit when used for their anti-inflammatory or immunomodulatory properties, which include the blockage of pro-inflammatory cytokines, such as interleukin (IL)-8 and tumor necrosis factor-α (TNF-α). They have been used in CRS patients not responding to traditional corticosteroid-based treatment regimens, but appear to be most effective specifically in Th1-mediated non-eosinophilic CRS in long durations and low doses. Further research is needed to better identify characteristics known to correlate with macrolide response so early directed therapy can be implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular Interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cervin A, Wallwork B. Efficacy and safety of long-term antibiotics (macrolides) for the treatment of chronic rhinosinusitis. Curr Allergy Asthma Rep. 2014;14(3):416.

    Article  PubMed  Google Scholar 

  2. Champney WS, Tober CL. Inhibition of translation and 50S ribosomal subunit formation in Staphylococcus aureus cells by 11 different ketolide antibiotics. Curr Microbiol. 1998;37(6):418–25.

    Article  CAS  PubMed  Google Scholar 

  3. Harvey RJ, Wallwork BD, Lund VJ. Anti-inflammatory effects of macrolides: applications in chronic rhinosinusitis. Immunol Allergy Clin N Am. 2009;29(4):689–703.

    Article  Google Scholar 

  4. Culic O, Erakovic V, Parnham MJ. Anti-inflammatory effects of macrolide antibiotics. Eur J Pharmacol. 2001;429(1–3):209–29.

    Article  CAS  PubMed  Google Scholar 

  5. Khan AA, Slifer TR, Araujo FG, Remington JS. Effect of clarithromycin and azithromycin on production of cytokines by human monocytes. Int J Antimicrob Agents. 1999;11(2):121–32.

    Article  CAS  PubMed  Google Scholar 

  6. Suzuki H, Shimomura A, Ikeda K, Furukawa M, Oshima T, Takasaka T. Inhibitory effect of macrolides on interleukin-8 secretion from cultured human nasal epithelial cells. Laryngoscope. 1997;107(12 Pt 1):1661–6.

    Article  CAS  PubMed  Google Scholar 

  7. Tamaoki J, Kadota J, Takizawa H. Clinical implications of the immunomodulatory effects of macrolides. Am J Med. 2004;117(Suppl 9A):5S–11S.

    CAS  PubMed  Google Scholar 

  8. • Wallwork B, Coman W, Mackay-Sim A, Greiff L, Cervin A. A double-blind, randomized, placebo-controlled trial of macrolide in the treatment of chronic rhinosinusitis. Laryngoscope. 2006;116(2):189–93. This high quality study reported improvements in QOL scores, endoscopy, and lavage IL-8 levels in the macrolide group versus placebo, particularly highlighting benefit in a low IgE subgroup.

    Article  CAS  PubMed  Google Scholar 

  9. Yamada T, Fujieda S, Mori S, Yamamoto H, Saito H. Macrolide treatment decreased the size of nasal polyps and IL-8 levels in nasal lavage. Am J Rhinol. 2000;14(3):143–8.

    Article  CAS  PubMed  Google Scholar 

  10. Bachert C, Wagenmann M, Rudack C, et al. The role of cytokines in infectious sinusitis and nasal polyposis. Allergy. 1998;53(1):2–13.

    Article  CAS  PubMed  Google Scholar 

  11. Vanaudenaerde BM, Wuyts WA, Geudens N, et al. Macrolides inhibit IL17-induced IL8 and 8-isoprostane release from human airway smooth muscle cells. Am J Transplant. 2007;7(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  12. Tamaoki J, Sakai N, Tagaya E, Konno K. Macrolide antibiotics protect against endotoxin-induced vascular leakage and neutrophil accumulation in rat trachea. Antimicrob Agents Chemother. 1994;38(7):1641–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oda H, Kadota J, Kohno S, Hara K. Leukotriene B4 in bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis. Chest. 1995;108(1):116–22.

    Article  CAS  PubMed  Google Scholar 

  14. Tagaya E, Tamaoki J, Kondo M, Nagai A. Effect of a short course of clarithromycin therapy on sputum production in patients with chronic airway hypersecretion. Chest. 2002;122(1):213–8.

    Article  CAS  PubMed  Google Scholar 

  15. Tamaoki J. The effects of macrolides on inflammatory cells. Chest. 2004;125(2 Suppl):41S–50S. quiz 51S

    Article  CAS  PubMed  Google Scholar 

  16. Hoffmann N, Lee B, Hentzer M, et al. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(-/-) mice. Antimicrob Agents Chemother. 2007;51(10):3677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tateda K, Comte R, Pechere JC, Kohler T, Yamaguchi K, Van Delden C. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2001;45(6):1930–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kudoh S, Azuma A, Yamamoto M, Izumi T, Ando M. Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med. 1998;157(6 Pt 1):1829–32.

    Article  CAS  PubMed  Google Scholar 

  19. Nagai H, Shishido H, Yoneda R, Yamaguchi E, Tamura A, Kurashima A. Long-term low-dose administration of erythromycin to patients with diffuse panbronchiolitis. Respiration. 1991;58(3–4):145–9.

    CAS  PubMed  Google Scholar 

  20. Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014;143(2):225–45.

    Article  CAS  PubMed  Google Scholar 

  21. Saiman L, Marshall BC, Mayer-Hamblett N, et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA. 2003;290(13):1749–56.

    Article  CAS  PubMed  Google Scholar 

  22. Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J. Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax. 2002;57(3):212–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Altenburg J, de Graaff CS, Stienstra Y, et al. Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA. 2013;309(12):1251–9.

    Article  CAS  PubMed  Google Scholar 

  24. Valery PC, Morris PS, Byrnes CA, et al. Long-term azithromycin for indigenous children with non-cystic-fibrosis bronchiectasis or chronic suppurative lung disease (Bronchiectasis Intervention Study): a multicentre, double-blind, randomised controlled trial. Lancet Respir Med. 2013;1(8):610–20.

    Article  CAS  PubMed  Google Scholar 

  25. Wong C, Jayaram L, Karalus N, et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):660–7.

    Article  CAS  PubMed  Google Scholar 

  26. Yalcin E, Kiper N, Ozcelik U, et al. Effects of claritromycin on inflammatory parameters and clinical conditions in children with bronchiectasis. J Clin Pharm Ther. 2006;31(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  27. Albert RK, Connett J, Bailey WC, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011;365(8):689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kostadima E, Tsiodras S, Alexopoulos EI, et al. Clarithromycin reduces the severity of bronchial hyperresponsiveness in patients with asthma. Eur Respir J. 2004;23(5):714–7.

    Article  CAS  PubMed  Google Scholar 

  29. Brusselle GG, Vanderstichele C, Jordens P, et al. Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax. 2013;68(4):322–9.

    Article  PubMed  Google Scholar 

  30. Ehnhage A, Rautiainen M, Fang AF, Sanchez SP. Pharmacokinetics of azithromycin in serum and sinus fluid after administration of extended-release and immediate-release formulations in patients with acute bacterial sinusitis. Int J Antimicrob Agents. 2008;31(6):561–6.

    Article  CAS  PubMed  Google Scholar 

  31. Fang AF, Palmer JN, Chiu AG, et al. Pharmacokinetics of azithromycin in plasma and sinus mucosal tissue following administration of extended-release or immediate-release formulations in adult patients with chronic rhinosinusitis. Int J Antimicrob Agents. 2009;34(1):67–71.

    Article  CAS  PubMed  Google Scholar 

  32. Singlas E. Clinical pharmacokinetics of azithromycin. Pathol Biol (Paris). 1995;43(6):505–11.

    CAS  Google Scholar 

  33. Lode H, Borner K, Koeppe P, Schaberg T. Azithromycin—review of key chemical, pharmacokinetic and microbiological features. J Antimicrob Chemother. 1996;37(Suppl C):1–8.

    Article  CAS  PubMed  Google Scholar 

  34. Coates P, Daniel R, Houston AC, Antrobus JH, Taylor T. An open study to compare the pharmacokinetics, safety and tolerability of a multiple-dose regimen of azithromycin in young and elderly volunteers. Eur J Clin Microbiol Infect Dis. 1991;10(10):850–2.

    Article  CAS  PubMed  Google Scholar 

  35. Lucchi M, Damle B, Fang A, et al. Pharmacokinetics of azithromycin in serum, bronchial washings, alveolar macrophages and lung tissue following a single oral dose of extended or immediate release formulations of azithromycin. J Antimicrob Chemother. 2008;61(4):884–91.

    Article  CAS  PubMed  Google Scholar 

  36. Chan A, Isbister GK, Kirkpatrick CM, Dufful SB. Drug-induced QT prolongation and torsades de pointes: evaluation of a QT nomogram. QJM. 2007;100(10):609–15.

    Article  CAS  PubMed  Google Scholar 

  37. Pessayre D, Larrey D, Funck-Brentano C, Benhamou JP. Drug interactions and hepatitis produced by some macrolide antibiotics. J Antimicrob Chemother. 1985;16(Suppl A):181–94.

    Article  CAS  PubMed  Google Scholar 

  38. Yap YG, Camm AJ. Drug induced QT prolongation and torsades de pointes. Heart. 2003;89(11):1363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ray WA, Murray KT, Meredith S, Narasimhulu SS, Hall K, Stein CM. Oral erythromycin and the risk of sudden death from cardiac causes. N Engl J Med. 2004;351(11):1089–96.

    Article  CAS  PubMed  Google Scholar 

  40. Schembri S, Williamson PA, Short PM, et al. Cardiovascular events after clarithromycin use in lower respiratory tract infections: analysis of two prospective cohort studies. BMJ. 2013;346:f1235.

    Article  PubMed  Google Scholar 

  41. Svanstrom H, Pasternak B, Hviid A. Use of clarithromycin and roxithromycin and risk of cardiac death: cohort study. BMJ. 2014;349:g4930.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wong AY, Root A, Douglas IJ, et al. Cardiovascular outcomes associated with use of clarithromycin: population based study. BMJ. 2016;352:h6926.

    Article  PubMed  Google Scholar 

  43. Albert RK, Schuller JL, Network CCR. Macrolide antibiotics and the risk of cardiac arrhythmias. Am J Respir Crit Care Med. 2014;189(10):1173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Houin G, Tillement JP, Lhoste F, Rapin M, Soussy CJ, Duval J. Erythromycin pharmacokinetics in man. J Int Med Res. 1980;8(Suppl 2):9–14.

    PubMed  Google Scholar 

  45. Austin KL, Mather LE, Philpot CR, McDonald PJ. Intersubject and dose-related variability after intravenous administration of erythromycin. Br J Clin Pharmacol. 1980;10(3):273–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nilsen OG. Comparative pharmacokinetics of macrolides. J Antimicrob Chemother. 1987;20(Suppl B):81–8.

    Article  CAS  PubMed  Google Scholar 

  47. Nattel S, Ranger S, Talajic M, Lemery R, Roy D. Erythromycin-induced long QT syndrome: concordance with quinidine and underlying cellular electrophysiologic mechanism. Am J Med. 1990;89(2):235–8.

    Article  CAS  PubMed  Google Scholar 

  48. Blondeau JM, Shebelski SD, Hesje CK. Killing of Streptococcus pneumoniae by azithromycin, clarithromycin, erythromycin, telithromycin and gemifloxacin using drug minimum inhibitory concentrations and mutant prevention concentrations. Int J Antimicrob Agents. 2015;45(6):594–9.

    Article  CAS  PubMed  Google Scholar 

  49. Yamada K, Yanagihara K, Kaku N, et al. Azithromycin attenuates lung inflammation in a mouse model of ventilator-associated pneumonia by multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2013;57(8):3883–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Poetker DM, Jakubowski LA, Lal D, Hwang PH, Wright ED, Smith TL. Oral corticosteroids in the management of adult chronic rhinosinusitis with and without nasal polyps: an evidence-based review with recommendations. International forum of allergy & rhinology. 2013;3(2):104–20.

    Article  Google Scholar 

  51. Rudmik L, Hoy M, Schlosser RJ, et al. Topical therapies in the management of chronic rhinosinusitis: an evidence-based review with recommendations. International forum of allergy & rhinology. 2013;3(4):281–98.

    Article  Google Scholar 

  52. Rudmik L, Soler ZM, Orlandi RR, et al. Early postoperative care following endoscopic sinus surgery: an evidence-based review with recommendations. International forum of allergy & rhinology. 2011;1(6):417–30.

    Article  Google Scholar 

  53. Cervin A, Kalm O, Sandkull P, Lindberg S. One-year low-dose erythromycin treatment of persistent chronic sinusitis after sinus surgery: clinical outcome and effects on mucociliary parameters and nasal nitric oxide. Otolaryngology—head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. 2002;126(5):481–9.

    Article  Google Scholar 

  54. •• Fokkens WJ, Lund VJ, Mullol J, et al. European position paper on rhinosinusitis and nasal polyps 2012. Rhinol Suppl. 2012;3(23):3 p preceding table of contents: 1-298. A comprehensive evidence based review and treatment guidelines for CRS. This includes the use of macrolide antibiotics and concludes the level of evidence for use of macrolides in CRSsnP is Ib with strength of recommendation C.

  55. •• Orlandi RR, Kingdom TT, Hwang PH, et al. International consensus statement on allergy and rhinology: rhinosinusitis. International forum of allergy & rhinology. 2016;6(Suppl 1):S22–209. The most recent summary of the best available evidence and current recommendations for management of the various entities of rhinosinusitis, including the evidence available for macrolide therapy in CRS. Macrolides are an option for CRSsNP patients; Aggregate grade of evidence: B.

    Article  Google Scholar 

  56. • Ragab SM, Lund VJ, Scadding G. Evaluation of the medical and surgical treatment of chronic rhinosinusitis: a prospective, randomised, controlled trial. Laryngoscope. 2004;114(5):923–30. An RCT assessing medical and surgical therapy for CRS, with the phenotypes CRSsNP and CRSwNP analyzed separately. This included the use of long term low dose macrolide therapy and demonstrated similar subjective and objective outcomes between the medical and surgical groups.

    Article  PubMed  Google Scholar 

  57. •• Soler ZM, Oyer SL, Kern RC, et al. Antimicrobials and chronic rhinosinusitis with or without polyposis in adults: an evidenced-based review with recommendations. International forum of allergy & rhinology. 2013;3(1):31–47. A comprehensive systematic review of the use of macrolide antibiotics in CRS, concluding that the use of macrolides in CRS is an option with aggregate quality of evidence B.

    Article  Google Scholar 

  58. Wen W, Liu W, Zhang L, et al. Increased neutrophilia in nasal polyps reduces the response to oral corticosteroid therapy. J Allergy Clin Immunol. 2012;129(6):1522–8. e1525

    Article  CAS  PubMed  Google Scholar 

  59. Snidvongs K, Pratt E, Chin D, Sacks R, Earls P, Harvey RJ. Corticosteroid nasal irrigations after endoscopic sinus surgery in the management of chronic rhinosinusitis. International forum of allergy & rhinology. 2012;2(5):415–21.

    Article  Google Scholar 

  60. Haruna S, Shimada C, Ozawa M, Fukami S, Moriyama H. A study of poor responders for long-term, low-dose macrolide administration for chronic sinusitis. Rhinology. 2009;47(1):66–71.

    PubMed  Google Scholar 

  61. Boumpas DT, Chrousos GP, Wilder RL, Cupps TR, Balow JE. Glucocorticoid therapy for immune-mediated diseases: basic and clinical correlates. Ann Intern Med. 1993;119(12):1198–208.

    Article  CAS  PubMed  Google Scholar 

  62. Oakley GM, Christensen JM, Sacks R, Earls P, Harvey RJ. Characteristics of macrolide responders in persistent post-surgical rhinosinusitis. Submitted to Rhinology in March 2017. 2017.

  63. Snidvongs K, Lam M, Sacks R, et al. Structured histopathology profiling of chronic rhinosinusitis in routine practice. International forum of allergy & rhinology. 2012;2(5):376–85.

    Article  Google Scholar 

  64. Illing EA, Woodworth BA. Management of the upper airway in cystic fibrosis. Curr Opin Pulm Med. 2014;20(6):623–31.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lin DC, Chandra RK, Tan BK, et al. Association between severity of asthma and degree of chronic rhinosinusitis. American journal of rhinology & allergy. 2011;25(4):205–8.

    Article  Google Scholar 

  66. Ramakrishnan VR, Ferril GR, Suh JD, Woodson T, Green TJ, Kingdom TT. Upper and lower airways associations in patients with chronic rhinosinusitis and bronchiectasis. International forum of allergy & rhinology. 2013;3(11):921–7.

    Article  Google Scholar 

  67. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716–25.

    Article  CAS  PubMed  Google Scholar 

  68. •• Fokkens WJ, Lund VJ, Mullol J, et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology. 2012;50(1):1–12.

    PubMed  Google Scholar 

  69. Suzuki H, Ikeda K, Honma R, et al. Prognostic factors of chronic rhinosinusitis under long-term low-dose macrolide therapy. ORL J Otorhinolaryngol Relat Spec. 2000;62(3):121–7.

    Article  CAS  PubMed  Google Scholar 

  70. Head K, Chong LY, Piromchai P, et al. Systemic and topical antibiotics for chronic rhinosinusitis. The Cochrane database of systematic reviews. 2016;4:CD011994.

    PubMed  Google Scholar 

  71. Oliveira IS, Crosara PF, Cassali GD, et al. Evaluation of the improvement of quality of life with azithromycin in the treatment of eosinophilic nasal polyposis. Braz J Otorhinolaryngol. 2016;82(2):198–202.

    Article  PubMed  Google Scholar 

  72. Amali A, Saedi B, Rahavi-Ezabadi S, Ghazavi H, Hassanpoor N. Long-term postoperative azithromycin in patients with chronic rhinosinusitis: a randomized clinical trial. American journal of rhinology & allergy. 2015;29(6):421–4.

    Article  Google Scholar 

  73. Rudmik L, Soler ZM. Medical therapies for adult chronic sinusitis: a systematic review. JAMA. 2015;314(9):926–39.

    Article  CAS  PubMed  Google Scholar 

  74. Haxel BR, Clemens M, Karaiskaki N, Dippold U, Kettern L, Mann WJ. Controlled trial for long-term low-dose erythromycin after sinus surgery for chronic rhinosinusitis. Laryngoscope. 2015;125(5):1048–55.

    Article  CAS  PubMed  Google Scholar 

  75. Varvyanskaya A, Lopatin A. Efficacy of long-term low-dose macrolide therapy in preventing early recurrence of nasal polyps after endoscopic sinus surgery. International forum of allergy & rhinology. 2014;4(7):533–41.

    Article  Google Scholar 

  76. Maniakas A, Desrosiers M. Azithromycin add-on therapy in high-risk postendoscopic sinus surgery patients failing corticosteroid irrigations: a clinical practice audit. American journal of rhinology & allergy. 2014;28(2):151–5.

    Article  Google Scholar 

  77. Fan Y, Xu R, Hong H, et al. High and low doses of clarithromycin treatment are associated with different clinical efficacies and immunomodulatory properties in chronic rhinosinusitis. J Laryngol Otol. 2014;128(3):236–41.

    Article  CAS  PubMed  Google Scholar 

  78. Dabirmoghaddam P, Mehdizadeh Seraj J, Bastaninejad S, Meighani A, Mokhtari Z. The efficacy of clarithromycin in patients with severe nasal polyposis. Acta Med Iran. 2013;51(6):359–64.

    PubMed  Google Scholar 

  79. Pynnonen MA, Venkatraman G, Davis GE. Macrolide therapy for chronic rhinosinusitis: a meta-analysis. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. 2013;148(3):366–73.

    Article  Google Scholar 

  80. Nakamura Y, Suzuki M, Yokota M, et al. Optimal duration of macrolide treatment for chronic sinusitis after endoscopic sinus surgery. Auris Nasus Larynx. 2013;40(4):366–72.

    Article  PubMed  Google Scholar 

  81. Hashiba M, Baba S. Efficacy of long-term administration of clarithromycin in the treatment of intractable chronic sinusitis. Acta Otolaryngol Suppl. 1996;525:73–8.

    CAS  PubMed  Google Scholar 

  82. Kita H, Takezawa H, Isobe M, Kataura A. Long-term low dose erythromycin and roxithromycin therapy for chronic sinusitis. Practica Otologica. 1995;1995(Supplement 84):62–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gretchen M. Oakley.

Ethics declarations

Conflict of Interest

Dr. Oakley declares no conflicts of interest relevant to this manuscript. Dr. Lund reports personal fees from MSD, Crucell (Johnson and Johnson), NeilMed, Vitaccess, Vifor, GSK, and Abbott. Dr. Harvey reports grants and personal fees from Olympus, Medtronic, Neilmed, and Seqiris.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Rhinosinusitis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oakley, G.M., Harvey, R.J. & Lund, V.J. The Role of Macrolides in Chronic Rhinosinusitis (CRSsNP and CRSwNP). Curr Allergy Asthma Rep 17, 30 (2017). https://doi.org/10.1007/s11882-017-0696-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-017-0696-z

Keywords

Navigation