Skip to main content

Advertisement

Log in

The Skin as a Route of Allergen Exposure: Part II. Allergens and Role of the Microbiome and Environmental Exposures

  • Allergens (RK Bush and JA Woodfolk, Section Editors)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This second part of the article aims to highlight recent contributions in the literature that enhance our understanding of the cutaneous immune response to allergen.

Recent Findings

Several properties of allergens facilitate barrier disruption and cutaneous sensitization. There is a strong epidemiologic relationship between the microbiome, both the gut and skin, and atopic dermatitis (AD). The mechanisms connecting these two entities remain enigmatic; however, recent murine models show that commensal skin bacteria play an active role in supporting skin barrier homeostasis and defense against microbial penetration. Likewise, the association between the lack of colonization with Staph species and AD development suggests a potentially functional role for these organisms in regulating the skin barrier and response to environmental allergens. In undisrupted skin, evidence suggests that the cutaneous route may promote allergen tolerance.

Summary

Properties of environmental allergens and commensal bacteria add to the complex landscape of skin immunity. Further investigation is needed to elucidate how these properties regulate the cutaneous immune response to allergen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Atopic dermatitis

AMP:

Antimicrobial peptide

CGN:

Culture gram-negative bacteria

DC:

Dendritic cell

DC-SIGN:

Dendritic cell-specific ICAM-grabbing nonintegrin

TLR:

Toll-like receptor

Treg:

T regulatory cell

EDC:

Endocrine-disrupting compound

EPIT:

Epicutaneous immunotherapy

PRR:

Pattern recognition receptor

PAR-2:

Protease-activated receptor-2

DNTB:

2,4-Dinitrothiocyanobenzene

LC:

Langerhans cell

LPS:

Lipopolysaccharide

MC:

Mast cell

MDDC:

Monocyte-derived DC

PAMP:

Pathogen-associated molecular pattern

TER:

Transepithelial resistance

UV:

Ultraviolet

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Hostetler SG, Kaffenberger B, Hostetler T, Zirwas MJ. The role of airborne proteins in atopic dermatitis. J Clin Aesthet Dermatol. 2010;3:22–31.

    PubMed  PubMed Central  Google Scholar 

  2. Shimura S et al. Epicutaneous allergic sensitization by cooperation between allergen protease activity and mechanical skin barrier damage in mice. J Investigat Dermatol. 2016;136:1408–17. doi:10.1016/j.jid.2016.02.810.

    Article  CAS  Google Scholar 

  3. Nakamura T et al. Reduction of skin barrier function by proteolytic activity of a recombinant house dust mite major allergen Der f 1. J Investigat Dermatol. 2006;126:2719–23. doi:10.1038/sj.jid.5700584.

    Article  CAS  Google Scholar 

  4. Jeong SK et al. Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. J Investigat Dermatol. 2008;128:1930–9. doi:10.1038/jid.2008.13.

    Article  CAS  Google Scholar 

  5. Scott G et al. Protease-activated receptor 2, a receptor involved in melanosome transfer, is upregulated in human skin by ultraviolet irradiation. J Investigat Dermatol. 2001;117:1412–20. doi:10.1046/j.0022-202x.2001.01575.x.

    Article  CAS  Google Scholar 

  6. Nilsson L et al. Season of birth as predictor of atopic manifestations. Arch Dis Child. 1997;76:341–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Steinhoff M et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci. 2003;23:6176–80.

    CAS  PubMed  Google Scholar 

  8. Thyssen JP, Zirwas MJ, Elias PM. Potential role of reduced environmental UV exposure as a driver of the current epidemic of atopic dermatitis. J Allerg Clin Immunol. 2015;136:1163–9. doi:10.1016/j.jaci.2015.06.042.

    Article  Google Scholar 

  9. Fox AT, Sasieni P, du Toit G, Syed H, Lack G. Household peanut consumption as a risk factor for the development of peanut allergy. J Allerg Clin Immunol. 2009;123:417–23. doi:10.1016/j.jaci.2008.12.014.

    Article  CAS  Google Scholar 

  10. Brough HA et al. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. J Allerg Clin Immunol. 2015;135:164–70. doi:10.1016/j.jaci.2014.10.007.

    Article  CAS  Google Scholar 

  11. Trompette A et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature. 2009;457:585–8. doi:10.1038/nature07548.

    Article  CAS  PubMed  Google Scholar 

  12. Sporri R, Reis e Sousa C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat Immunol. 2005;6:163–70. doi:10.1038/ni1162.

    Article  PubMed  Google Scholar 

  13. Vogel SZ et al. TCAIM decreases T cell priming capacity of dendritic cells by inhibiting TLR-induced Ca2+ influx and IL-2 production. J Immunol. 2015;194:3136–46. doi:10.4049/jimmunol.1400713.

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, McCusker C. Neonatal exposure with LPS and/or allergen prevents experimental allergic airways disease: development of tolerance using environmental antigens. J Allerg Clin Immunol. 2006;118:143–51. doi:10.1016/j.jaci.2006.03.020.

    Article  CAS  Google Scholar 

  15. Haapakoski R et al. Toll-like receptor activation during cutaneous allergen sensitization blocks development of asthma through IFN-gamma-dependent mechanisms. J Investigat Dermatol. 2013;133:964–72. doi:10.1038/jid.2012.356.

    Article  CAS  Google Scholar 

  16. Bortolatto J, Mirotti L, Rodriguez D, Gomes E, Russo M. Adsorption of toll-like receptor 4 agonist to alum-based tetanus toxoid vaccine dampens pro-T helper 2 activities and enhances antibody responses. J Immunol Res. 2015;2015:280238. doi:10.1155/2015/280238.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ahmad-Nejad P et al. The toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype. J Allerg Clin Immunol. 2004;113:565–7.

    Article  CAS  Google Scholar 

  18. Hasannejad H, Takahashi R, Kimishima M, Hayakawa K, Shiohara T. Selective impairment of Toll-like receptor 2-mediated proinflammatory cytokine production by monocytes from patients with atopic dermatitis. J Allerg Clin Immunol. 2007;120:69–75. doi:10.1016/j.jaci.2007.04.010.

    Article  CAS  Google Scholar 

  19. Niebuhr M, Lutat C, Sigel S, Werfel T. Impaired TLR-2 expression and TLR-2-mediated cytokine secretion in macrophages from patients with atopic dermatitis. Allergy. 2009;64:1580–7. doi:10.1111/j.1398-9995.2009.02050.x.

    Article  CAS  PubMed  Google Scholar 

  20. Tulic MK. Differences in innate immune function between allergic and nonallergic children: new insights into immune ontogeny. J Allerg Clin Immunol. 2011;127:470–478 e471. doi:10.1016/j.jaci.2010.09.020.

    Article  CAS  Google Scholar 

  21. Iram N et al. Age-related changes in expression and function of Toll-like receptors in human skin. Development. 2012;139:4210–9. doi:10.1242/dev.083477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuki T et al. Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes. J Immunol. 2011;187:3230–7. doi:10.4049/jimmunol.1100058.

    Article  CAS  PubMed  Google Scholar 

  23. Kuo IH, Yoshida T, De Benedetto A, Beck LA. The cutaneous innate immune response in patients with atopic dermatitis. J Allerg Clin Immunol. 2013;131:266–78. doi:10.1016/j.jaci.2012.12.1563.

    Article  CAS  Google Scholar 

  24. Li DQ. Short ragweed pollen triggers allergic inflammation through Toll-like receptor 4-dependent thymic stromal lymphopoietin/OX40 ligand/OX40 signaling pathways. J Allerg Clin Immunol. 2011;128:1318–1325 e1312. doi:10.1016/j.jaci.2011.06.041.

    Article  CAS  Google Scholar 

  25. Romani N et al. Epidermal Langerhans cells—changing views on their function in vivo. Immunol Lett. 2006;106:119–25. doi:10.1016/j.imlet.2006.05.010.

    Article  CAS  PubMed  Google Scholar 

  26. Shreffler WG et al. The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J Immunol. 2006;177:3677–85.

    Article  CAS  PubMed  Google Scholar 

  27. Hsu SC et al. Functional interaction of common allergens and a C-type Lectin receptor, dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN), on human dendritic cells. J Biol Chem. 2010;285:7903–10. doi:10.1074/jbc.M109.058370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kamalakannan M, Chang LM, Grishina G, Sampson HA, Masilamani M. Identification and characterization of DC-SIGN-binding glycoproteins in allergenic foods. Allergy. 2016;71:1145–55. doi:10.1111/all.12873.

    Article  CAS  PubMed  Google Scholar 

  29. Desmedt B et al. HS-GC-MS method for the analysis of fragrance allergens in complex cosmetic matrices. Talanta. 2015;131:444–51. doi:10.1016/j.talanta.2014.08.006.

    Article  CAS  PubMed  Google Scholar 

  30. Savage JH, Matsui EC, Wood RA, Keet CA. Urinary levels of triclosan and parabens are associated with aeroallergen and food sensitization. J Allerg Clin Immunol. 2012;130:453–460 e457. doi:10.1016/j.jaci.2012.05.006.

    Article  CAS  Google Scholar 

  31. Pepys J, Mitchell J, Hawkins R, Malo JL. A longitudinal study of possible allergy to enzyme detergents. Clin Allerg. 1985;15:101–15.

    Article  CAS  Google Scholar 

  32. Malo JL, Chan-Yeung M. Agents causing occupational asthma. J Allerg Clin Immunol. 2009;123:545–50. doi:10.1016/j.jaci.2008.09.010.

    Article  CAS  Google Scholar 

  33. Gaubert A et al. Identification and absolute quantification of enzymes in laundry detergents by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem. 2016;408:4669–81. doi:10.1007/s00216-016-9550-8.

    Article  CAS  PubMed  Google Scholar 

  34. Dooms-Goossens A, Blockeel I. Allergic contact dermatitis and photoallergic contact dermatitis due to soaps and detergents. Clin Dermatol. 1996;14:67–76.

    Article  CAS  PubMed  Google Scholar 

  35. Varga A et al. Ragweed pollen extract intensifies lipopolysaccharide-induced priming of NLRP3 inflammasome in human macrophages. Immunology. 2013;138:392–401. doi:10.1111/imm.12052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Werfel T et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allerg Clin Immunol. 2016;138:336–49. doi:10.1016/j.jaci.2016.06.010.

    Article  CAS  Google Scholar 

  37. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9:244–53. doi:10.1038/nrmicro2537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McGirt LY, Beck LA. Innate immune defects in atopic dermatitis. J Allerg Clin Immunol. 2006;118:202–8. doi:10.1016/j.jaci.2006.04.033.

    Article  CAS  Google Scholar 

  39. Schmid-Wendtner MH, Korting HC. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol. 2006;19:296–302. doi:10.1159/000094670.

    Article  PubMed  Google Scholar 

  40. Medves JM, O’Brien B. Does bathing newborns remove potentially harmful pathogens from the skin? Birth. 2001;28:161–5.

    Article  CAS  PubMed  Google Scholar 

  41. Moraille R, Pickens WL, Visscher MO, Hoath SB. A novel role for vernix caseosa as a skin cleanser. Biol Neonate. 2005;87:8–14. doi:10.1159/000080488.

    Article  CAS  PubMed  Google Scholar 

  42. Yoshio H et al. Antimicrobial polypeptides of human vernix caseosa and amniotic fluid: implications for newborn innate defense. Pediatr Res. 2003;53:211–6. doi:10.1203/01.PDR.0000047471.47777.B0.

    Article  CAS  PubMed  Google Scholar 

  43. Marchini G et al. The newborn infant is protected by an innate antimicrobial barrier: peptide antibiotics are present in the skin and vernix caseosa. British J Dermatol. 2002;147:1127–34.

    Article  CAS  Google Scholar 

  44. Scharschmidt TC et al. A wave of regulatory t cells into neonatal skin mediates tolerance to commensal microbes. Immunity. 2015;43:1011–21. doi:10.1016/j.immuni.2015.10.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Autenrieth SE et al. Depletion of dendritic cells enhances innate anti-bacterial host defense through modulation of phagocyte homeostasis. PLoS Pathog. 2012;8:e1002552. doi:10.1371/journal.ppat.1002552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zeeuwen PL, Kleerebezem M, Timmerman HM, Schalkwijk J. Microbiome and skin diseases. Curr Opin Allergy Clin Immunol. 2013;13:514–20. doi:10.1097/ACI.0b013e328364ebeb.

    Article  CAS  PubMed  Google Scholar 

  47. Smeekens SP et al. Skin microbiome imbalance in patients with STAT1/STAT3 defects impairs innate host defense responses. J Innate Immun. 2014;6:253–62. doi:10.1159/000351912.

    CAS  PubMed  Google Scholar 

  48. Wisniewski JA et al. Sensitization to food and inhalant allergens in relation to age and wheeze among children with atopic dermatitis. Clin Experiment Allerg : J British Soc Allerg Clin Immunol. 2013;43:1160–70. doi:10.1111/cea.12169.

    Article  CAS  Google Scholar 

  49. Nakamura Y et al. Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503:397–401. doi:10.1038/nature12655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakatsuji T et al. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. J Investigat Dermatol. 2016. doi:10.1016/j.jid.2016.05.127.

    Google Scholar 

  51. Simpson EL et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J Allerg Clin Immunol. 2014;134:818–23. doi:10.1016/j.jaci.2014.08.005.

    Article  Google Scholar 

  52. Horimukai K. Application of moisturizer to neonates prevents development of atopic dermatitis. J Allerg Clin Immunol. 2014;134:824–830 e826. doi:10.1016/j.jaci.2014.07.060.

    Article  Google Scholar 

  53. Czarnowicki T. Petrolatum: barrier repair and antimicrobial responses underlying this “inert” moisturizer. J Allerg Clin Immunol. 2016;137:1091–1102 e1097. doi:10.1016/j.jaci.2015.08.013.

    Article  CAS  Google Scholar 

  54. Myles IA, et al. Transplantation of human skin microbiota in models of atopic dermatitis. JCI Insight. 2016; 1. doi:10.1172/jci.insight.86955.

  55. Kennedy EA. Skin microbiome before development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J Allerg Clin Immunol. 2016. doi:10.1016/j.jaci.2016.07.029.

    Google Scholar 

  56. Gong JQ et al. Skin colonization by Staphylococcus aureus in patients with eczema and atopic dermatitis and relevant combined topical therapy: a double-blind multicentre randomized controlled trial. British J Dermatol. 2006;155:680–7. doi:10.1111/j.1365-2133.2006.07410.x.

    Article  CAS  Google Scholar 

  57. Gao PS et al. Genetic variants in interferon regulatory factor 2 (IRF2) are associated with atopic dermatitis and eczema herpeticum. J Investigat Dermatol. 2012;132:650–7. doi:10.1038/jid.2011.374.

    Article  CAS  Google Scholar 

  58. Leung DY et al. Human atopic dermatitis complicated by eczema herpeticum is associated with abnormalities in IFN-gamma response. J Allerg Clin Immunol. 2011;127(965–973):e961–5. doi:10.1016/j.jaci.2011.02.010.

    Google Scholar 

  59. Broccardo CJ. Comparative proteomic profiling of patients with atopic dermatitis based on history of eczema herpeticum infection and Staphylococcus aureus colonization. J Allerg Clin Immunol. 2011;127:186–93. doi:10.1016/j.jaci.2010.10.033. 193 e181-111.

    Article  CAS  Google Scholar 

  60. Tsakok T, McKeever TM, Yeo L, Flohr C. Does early life exposure to antibiotics increase the risk of eczema? A systematic review. British J Dermatol. 2013;169:983–91. doi:10.1111/bjd.12476.

    Article  CAS  Google Scholar 

  61. Watanabe S et al. Differences in fecal microflora between patients with atopic dermatitis and healthy control subjects. J Allerg Clin Immunol. 2003;111:587–91.

    Article  Google Scholar 

  62. Hong PY et al. Comparative analysis of fecal microbiota in infants with and without eczema. PLoS One. 2010;5:e9964. doi:10.1371/journal.pone.0009964.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Abrahamsson TR. Low diversity of the gut microbiota in infants with atopic eczema. J Allerg Clin Immunol. 2012;129:434–40. doi:10.1016/j.jaci.2011.10.025. 440 e431-432.

    Article  Google Scholar 

  64. West CE et al. Associations between maternal antioxidant intakes in pregnancy and infant allergic outcomes. Nutrients. 2012;4:1747–58. doi:10.3390/nu4111747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee J, Seto D, Bielory L. Meta-analysis of clinical trials of probiotics for prevention and treatment of pediatric atopic dermatitis. J Allerg Clin Immunol. 2008;121:116–121 e111. doi:10.1016/j.jaci.2007.10.043.

    Article  Google Scholar 

  66. Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends Mol Med. 2015;21:109–17. doi:10.1016/j.molmed.2014.12.002.

    Article  PubMed  Google Scholar 

  67. Saarinen UM, Kajosaari M. Breastfeeding as prophylaxis against atopic disease: prospective follow-up study until 17 years old. Lancet. 1995;346:1065–9.

    Article  CAS  PubMed  Google Scholar 

  68. Butland BK et al. Investigation into the increase in hay fever and eczema at age 16 observed between the 1958 and 1970 British birth cohorts. BMJ. 1997;315:717–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Du Toit G et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med. 2015;372:803–13. doi:10.1056/NEJMoa1414850.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wjst M et al. Does breast feeding prevent asthma and allergies? Results of the Munich asthma and allergy study. Monatsschr Kinderheilkd. 1992;140:769–74.

    CAS  PubMed  Google Scholar 

  71. Lucas A, Brooke OG, Morley R, Cole TJ, Bamford MF. Early diet of preterm infants and development of allergic or atopic disease: randomised prospective study. BMJ. 1990;300:837–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Baek JH. The link between serum vitamin D level, sensitization to food allergens, and the severity of atopic dermatitis in infancy. J Pediatr. 2014;165:849–854 e841. doi:10.1016/j.jpeds.2014.06.058.

    Article  CAS  PubMed  Google Scholar 

  73. Lack G. Epidemiologic risks for food allergy. J Allerg Clin Immunol. 2008;121:1331–6. doi:10.1016/j.jaci.2008.04.032.

    Article  CAS  Google Scholar 

  74. Sachs-Olsen C. Eoxins: a new inflammatory pathway in childhood asthma. J Allerg Clin Immunol. 2010;126:859–867 e859. doi:10.1016/j.jaci.2010.07.015.

    Article  CAS  Google Scholar 

  75. Wiktorowska-Owczarek A, Berezinska M, Nowak JZ. PUFAs: structures, metabolism and functions. Adv Clin Exp Med. 2016;24:931–941. doi:10.17219/acem/31243.

  76. Wisniewski J, Agrawal R, Woodfolk JA. Mechanisms of tolerance induction in allergic disease: integrating current and emerging concepts. Clin Experiment Allerg : J British Soc Allerg Clin Immunol. 2013;43:164–76. doi:10.1111/cea.12016.

    Article  CAS  Google Scholar 

  77. Oyoshi MK et al. Epicutaneous challenge of orally immunized mice redirects antigen-specific gut-homing T cells to the skin. J Clin Invest. 2011;121:2210–20. doi:10.1172/JCI43586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lack G, Plaut M, Sayre PH. Peanut consumption in infants at risk for peanut allergy. N Engl J Med. 2015;372:2165–6. doi:10.1056/NEJMc1504021.

    PubMed  Google Scholar 

  79. Mondoulet L. Specific epicutaneous immunotherapy prevents sensitization to new allergens in a murine model. J Allerg Clin Immunol. 2015;135:1546–1557 e1544. doi:10.1016/j.jaci.2014.11.028.

    Article  CAS  Google Scholar 

  80. Akbari O, DeKruyff RH, Umetsu DT. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol. 2001;2:725–31. doi:10.1038/90667.

    Article  CAS  PubMed  Google Scholar 

  81. Dioszeghy V. Differences in phenotype, homing properties and suppressive activities of regulatory T cells induced by epicutaneous, oral or sublingual immunotherapy in mice sensitized to peanut. Cell Mol Immunol. 2016. doi:10.1038/cmi.2016.14.

    PubMed  Google Scholar 

  82. Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9:165–9.

    Article  CAS  PubMed  Google Scholar 

  83. • Yoshida K. Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis. J Allerg Clin Immunol. 2014;134:856–64. doi:10.1016/j.jaci.2014.08.001. Findings demonstrate important functional differences between the ability of Langerhans cells and inflammatory dendritic epidermal cells to uptake environmental allergens.

    Article  Google Scholar 

  84. Ouchi T et al. Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome. J Exp Med. 2011;208:2607–13. doi:10.1084/jem.20111718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Igyarto BZ et al. Langerhans cells suppress contact hypersensitivity responses via cognate CD4 interaction and Langerhans cell-derived IL-10. J Immunol. 2009;183:5085–93. doi:10.4049/jimmunol.0901884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gomez de Aguero M. Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8(+) T cells and activating Foxp3(+) regulatory T cells. J Clin Invest. 2012;122:1700–11. doi:10.1172/JCI59725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Udey MC. Epidermal Langerhans cells tune skin reactivity to contact allergens. J Clin Invest. 2012;122:1602–5. doi:10.1172/JCI63190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the UVA Child Health Research Grant (J.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia A. Wisniewski.

Ethics declarations

Conflict of Interest

Drs. Knaysi, Smith, Wilson, and Wisniewski declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Allergens

George Knaysi and Anna R. Smith contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knaysi, G., Smith, A.R., Wilson, J.M. et al. The Skin as a Route of Allergen Exposure: Part II. Allergens and Role of the Microbiome and Environmental Exposures. Curr Allergy Asthma Rep 17, 7 (2017). https://doi.org/10.1007/s11882-017-0675-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-017-0675-4

Keywords

Navigation