Skip to main content

Advertisement

Log in

New Insights Into the Relationship Between Chitinase-3-Like-1 and Asthma

  • Asthma (WJ Calhoun and V Ortega, Section Editors)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

CHI3L1 (also known as YKL-40), a member of “mammalian chitinase-like proteins,” is a serum protein lacking enzymatic activity. Although the protein is highly conserved in mammals, a consensus regarding its role in human pathologies is currently lacking. In an attempt to shed light on the many physiological functions of the protein, specifically with regard to asthma, a comprehensive overview of recent studies is provided.

Recent Findings

In asthma, CHI3L1 is secreted from macrophages and airway epithelial cells through an IL-13 related mechanism. Th2-associated inflammatory responses due to allergen exposure, resulting in airway hyper-responsiveness and smooth muscle contraction, play a role in tissue remodeling.

Summary

The importance of CHI3L1 in initiation and development of asthma is not limited to its involvement in highly orchestrated events of inflammatory cytokines but further research is needed for further elucidation. Levels of the protein are associated with severity for numerous pathologies, including asthma, suggesting limited specificity as a biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Volck B, Price PA, Johansen JS, Sorensen O, Benfield TL, Nielsen HJ, et al. YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils. Proc Assoc Am Physicians. 1998;110(4):351–60.

    CAS  PubMed  Google Scholar 

  2. Kirkpatrick RB, Emery JG, Connor JR, Dodds R, Lysko PG, Rosenberg M. Induction and expression of human cartilage glycoprotein 39 in rheumatoid inflammatory and peripheral blood monocyte-derived macrophages. Exp Cell Res. 1997;237(1):46–54.

    Article  CAS  PubMed  Google Scholar 

  3. Kzhyshkowska J, Mamidi S, Gratchev A, Kremmer E, Schmuttermaier C, Krusell L, et al. Novel stabilin-1 interacting chitinase-like protein (SI-CLP) is upregulated in alternatively activated macrophages and secreted via lysosomal pathway. Blood. 2006;107(8):3221–8.

    Article  CAS  PubMed  Google Scholar 

  4. Nielsen AR, Plomgaard P, Krabbe KS, Johansen JS, Pedersen BK. IL-6, but not TNF-alpha, increases plasma YKL-40 in human subjects. Cytokine. 2011;55(1):152–5.

    Article  CAS  PubMed  Google Scholar 

  5. Hartl D, Lee CG, Da Silva CA, Chupp GL, Elias JA. Novel biomarkers in asthma: chemokines and chitinase-like proteins. Curr Opin Allergy Clin Immunol. 2009;9(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  6. Ober C, Chupp GL. The chitinase and chitinase-like proteins: a review of genetic and functional studies in asthma and immune-mediated diseases. Curr Opin Allergy Clin Immunol. 2009;9(5):401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schimpl M, Rush CL, Betou M, Eggleston IM, Recklies AD, van Aalten DM. Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties. Biochem J. 2012;446(1):149–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chupp GL, Lee CG, Jarjour N, Shim YM, Holm CT, He S, et al. A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med. 2007;357(20):2016–27.

    Article  CAS  PubMed  Google Scholar 

  9. Huang SK, Xiao HQ, Kleine-Tebbe J, Paciotti G, Marsh DG, Lichtenstein LM, et al. IL-13 expression at the sites of allergen challenge in patients with asthma. J Immunol (Baltimore, Md : 1950). 1995;155(5):2688–94.

    CAS  Google Scholar 

  10. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.

    Article  CAS  PubMed  Google Scholar 

  11. Lee CG, Hartl D, Lee GR, Koller B, Matsuura H, Da Silva CA, et al. Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J Exp Med. 2009;206(5):1149–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsai Y, Ko Y, Huang M, Lin M, Wu C, Wang C, et al. CHI3L1 polymorphisms associate with asthma in a Taiwanese population. BMC Med Genet. 2014;15:86. Provides information regarding rs4950928 (one of the most critical SNPs of chi3l1 gene) and asthma.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rejman JJ, Hurley WL. Isolation and characterization of a novel 39 kDa whey protein from bovine mammary secretions collected during the nonlactating period. Biochem Biophys Res Commun. 1988;150(1):329–34.

    Article  CAS  PubMed  Google Scholar 

  14. Rejman JJ, Hurley WL, Bahr JM. Enzyme-linked immunosorbent assays of bovine lactoferrin and a 39-kilodalton protein found in mammary secretions during involution. J Dairy Sci. 1989;72(2):555–60.

    Article  CAS  PubMed  Google Scholar 

  15. Aslam M, Hurley WL. Peptides generated from milk proteins in the bovine mammary gland during involution. J Dairy Sci. 1998;81(3):748–55.

    Article  CAS  PubMed  Google Scholar 

  16. Nyirkos P, Golds EE. Human synovial cells secrete a 39 kDa protein similar to a bovine mammary protein expressed during the non-lactating period. Biochem J. 1990;269(1):265–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johansen JS, Williamson MK, Rice JS, Price PA. Identification of proteins secreted by human osteoblastic cells in culture. J Bone Miner Res Off J Am Soc Bone Miner Res. 1992;7(5):501–12.

    Article  CAS  Google Scholar 

  18. Johansen JS, Moller S, Price PA, Bendtsen F, Junge J, Garbarsch C, et al. Plasma YKL-40: a new potential marker of fibrosis in patients with alcoholic cirrhosis? Scand J Gastroenterol. 1997;32(6):582–90.

    Article  CAS  PubMed  Google Scholar 

  19. Nishikawa KC, Millis AJ. gp38k (CHI3L1) is a novel adhesion and migration factor for vascular cells. Exp Cell Res. 2003;287(1):79–87.

    Article  CAS  PubMed  Google Scholar 

  20. Bigg HF, Wait R, Rowan AD, Cawston TE. The mammalian chitinase-like lectin, YKL-40, binds specifically to type I collagen and modulates the rate of type I collagen fibril formation. J Biol Chem. 2006;281(30):21082–95.

    Article  CAS  PubMed  Google Scholar 

  21. Hu B, Trinh K, Figueira WF, Price PA. Isolation and sequence of a novel human chondrocyte protein related to mammalian members of the chitinase protein family. J Biol Chem. 1996;271(32):19415–20.

    Article  CAS  PubMed  Google Scholar 

  22. Hakala BE, White C, Recklies AD. Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J Biol Chem. 1993;268(34):25803–10.

    CAS  PubMed  Google Scholar 

  23. Shackelton LM, Mann DM, Millis AJ. Identification of a 38-kDa heparin-binding glycoprotein (gp38k) in differentiating vascular smooth muscle cells as a member of a group of proteins associated with tissue remodeling. J Biol Chem. 1995;270(22):13076–83.

    Article  CAS  PubMed  Google Scholar 

  24. Harvey S, Weisman M, O'Dell J, Scott T, Krusemeier M, Visor J, et al. Chondrex: new marker of joint disease. Clin Chem. 1998;44(3):509–16.

    CAS  PubMed  Google Scholar 

  25. Rehli M, Krause SW, Andreesen R. Molecular characterization of the gene for human cartilage gp-39 (CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation. Genomics. 1997;43(2):221–5.

    Article  CAS  PubMed  Google Scholar 

  26. Johansen JS, Jensen BV, Roslind A, Nielsen D, Price PA. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research. Am Soc Prev Oncol. 2006;15(2):194–202.

    CAS  Google Scholar 

  27. Rehli M, Niller HH, Ammon C, Langmann S, Schwarzfischer L, Andreesen R, et al. Transcriptional regulation of CHI3L1, a marker gene for late stages of macrophage differentiation. J Biol Chem. 2003;278(45):44058–67.

    Article  CAS  PubMed  Google Scholar 

  28. Renkema GH, Boot RG, Au FL, Donker-Koopman WE, Strijland A, Muijsers AO, et al. Chitotriosidase, a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages. European J Biochem FEBS. 1998;251(1–2):504–9.

    Article  CAS  Google Scholar 

  29. Johansen JS, Hoyer PE, Larsen LA, Price PA, Mollgard K. YKL-40 protein expression in the early developing human musculoskeletal system. J Histochem Cytochem Off J Histochem Soc. 2007;55(12):1213–28.

    Article  CAS  Google Scholar 

  30. Bussink AP, Speijer D, Aerts JM, Boot RG. Evolution of mammalian chitinase (−like) members of family 18 glycosyl hydrolases. Genetics. 2007;177(2):959–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Funkhouser JD, Aronson Jr NN. Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evol Biol. 2007;7:96.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zaheerul H, Dalal P, Aronson Jr NN, Madura JD. Family 18 chitolectins: comparison of MGP40 and HUMGP39. Biochem Biophys Res Commun. 2007;359(2):221–6.

    Article  Google Scholar 

  33. Brochner CB, Johansen JS, Larsen LA, Bak M, Mikkelsen HB, Byskov AG, et al. YKL-40 is differentially expressed in human embryonic stem cells and in cell progeny of the three germ layers. J Histochem Cytochem Off J Histochem Soc. 2012;60(3):188–204.

    Article  Google Scholar 

  34. Mohanty AK, Singh G, Paramasivam M, Saravanan K, Jabeen T, Sharma S, et al. Crystal structure of a novel regulatory 40-kDa mammary gland protein (MGP-40) secreted during involution. J Biol Chem. 2003;278(16):14451–60.

    Article  CAS  PubMed  Google Scholar 

  35. De Ceuninck F, Gaufillier S, Bonnaud A, Sabatini M, Lesur C, Pastoureau P. YKL-40 (cartilage gp-39) induces proliferative events in cultured chondrocytes and synoviocytes and increases glycosaminoglycan synthesis in chondrocytes. Biochem Biophys Res Commun. 2001;285(4):926–31.

    Article  PubMed  Google Scholar 

  36. Morrison BW, Leder P. neu and ras initiate murine mammary tumors that share genetic markers generally absent in c-myc and int-2-initiated tumors. Oncogene. 1994;9(12):3417–26.

    CAS  PubMed  Google Scholar 

  37. Kirkpatrick RB, Matico RE, McNulty DE, Strickler JE, Rosenberg M. An abundantly secreted glycoprotein from Drosophila melanogaster is related to mammalian secretory proteins produced in rheumatoid tissues and by activated macrophages. Gene. 1995;153(2):147–54.

    Article  CAS  PubMed  Google Scholar 

  38. Kawamura K, Shibata T, Saget O, Peel D, Bryant PJ. A new family of growth factors produced by the fat body and active on Drosophila imaginal disc cells. Dev (Cambridge, England). 1999;126(2):211–9.

    CAS  Google Scholar 

  39. Badariotti F, Kypriotou M, Lelong C, Dubos MP, Renard E, Galera P, et al. The phylogenetically conserved molluscan chitinase-like protein 1 (Cg-Clp1), homologue of human HC-gp39, stimulates proliferation and regulates synthesis of extracellular matrix components of mammalian chondrocytes. J Biol Chem. 2006;281(40):29583–96.

    Article  CAS  PubMed  Google Scholar 

  40. Fusetti F, Pijning T, Kalk KH, Bos E, Dijkstra BW. Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39. J Biol Chem. 2003;278(39):37753–60.

    Article  CAS  PubMed  Google Scholar 

  41. Houston DR, Recklies AD, Krupa JC, van Aalten DM. Structure and ligand-induced conformational change of the 39- kDa glycoprotein from human articular chondrocytes. J Biol Chem. 2003;278(32):30206–12.

    Article  CAS  PubMed  Google Scholar 

  42. Krause SW, Rehli M, Kreutz M, Schwarzfischer L, Paulauskis JD, Andreesen R. Differential screening identifies genetic markers of monocyte to macrophage maturation. J Leukoc Biol. 1996;60(4):540–5.

    CAS  PubMed  Google Scholar 

  43. Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP. Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation. 2006;3:27.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ostergaard C, Johansen JS, Benfield T, Price PA, Lundgren JD. YKL-40 is elevated in cerebrospinal fluid from patients with purulent meningitis. Clin Diagn Lab Immunol. 2002;9(3):598–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mullett SJ, Hamilton RL, Hinkle DA. DJ-1 immunoreactivity in human brain astrocytes is dependent on infarct presence and infarct age. Neuropathol Off J Japanese Soc Neuropathol. 2009;29(2):125–31.

    Article  Google Scholar 

  46. Arion D, Unger T, Lewis DA, Levitt P, Mirnics K. Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol Psychiatry. 2007;62(7):711–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ringsholt M, Hogdall EV, Johansen JS, Price PA, Christensen LH. YKL-40 protein expression in normal adult human tissues—an immunohistochemical study. J Mol Histol. 2007;38(1):33–43.

    Article  CAS  PubMed  Google Scholar 

  48. Johansen JS. Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Dan Med Bull. 2006;53(2):172–209.

    CAS  PubMed  Google Scholar 

  49. Pelloski CE, Mahajan A, Maor M, Chang EL, Woo S, Gilbert M, et al. YKL-40 expression is associated with poorer response to radiation and shorter overall survival in glioblastoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11(9):3326–34.

    Article  CAS  Google Scholar 

  50. Malinda KM, Ponce L, Kleinman HK, Shackelton LM, Millis AJ. Gp38k, a protein synthesized by vascular smooth muscle cells, stimulates directional migration of human umbilical vein endothelial cells. Exp Cell Res. 1999;250(1):168–73.

    Article  CAS  PubMed  Google Scholar 

  51. Mizoguchi E. Chitinase 3-like-1 exacerbates intestinal inflammation by enhancing bacterial adhesion and invasion in colonic epithelial cells. Gastroenterology. 2006;130(2):398–411.

    Article  CAS  PubMed  Google Scholar 

  52. Recklies AD, White C, Ling H. The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase B-mediated signalling pathways. Biochem J. 2002;365(Pt 1):119–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Furuhashi K, Suda T, Nakamura Y, Inui N, Hashimoto D, Miwa S, et al. Increased expression of YKL-40, a chitinase- like protein, in serum and lung of patients with idiopathic pulmonary fibrosis. Respir Med. 2010;104(8):1204–10.

    Article  PubMed  Google Scholar 

  54. Johansen JS, Hvolris J, Hansen M, Backer V, Lorenzen I, Price PA. Serum YKL-40 levels in healthy children and adults. Comparison with serum and synovial fluid levels of YKL-40 in patients with osteoarthritis or trauma of the knee joint. Br J Rheumatol. 1996;35(6):553–9.

    Article  CAS  PubMed  Google Scholar 

  55. Saidi A, Javerzat S, Bellahcene A, De Vos J, Bello L, Castronovo V, et al. Experimental anti-angiogenesis causes upregulation of genes associated with poor survival in glioblastoma. Int J Cancer J Int du cancer. 2008;122(10):2187–98.

    Article  CAS  Google Scholar 

  56. Johansen JS, Christoffersen P, Moller S, Price PA, Henriksen JH, Garbarsch C, et al. Serum YKL-40 is increased in patients with hepatic fibrosis. J Hepatol. 2000;32(6):911–20.

    Article  CAS  PubMed  Google Scholar 

  57. Faibish M, Francescone R, Bentley B, Yan W, Shao R. A YKL-40-neutralizing antibody blocks tumor angiogenesis and progression: a potential therapeutic agent in cancers. Mol Cancer Ther. 2011;10(5):742–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Francescone RA, Scully S, Faibish M, Taylor SL, Oh D, Moral L, et al. Role of YKL-40 in the angiogenesis, radioresistance, and progression of glioblastoma. J Biol Chem. 2011;286(17):15332–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. He CH, Lee CG, Dela Cruz CS, Lee CM, Zhou Y, Ahangari F, et al. Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor alpha2. Cell Rep. 2013;4(4):830–41. Identifies the signaling pathway and receptors of YKL-40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim SH, Das K, Noreen S, Coffman F, Hameed M. Prognostic implications of immunohistochemically detected YKL-40 expression in breast cancer. World J Surg Oncol. 2007;5:17.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Roslind A, Johansen JS, Junker N, Nielsen DL, Dzaferi H, Price PA, et al. YKL-40 expression in benign and malignant lesions of the breast: a methodologic study. Appl Immunohistochem Mol Morphol AIMM Off Publ Soc Appl Immunohistochem. 2007;15(4):371–81.

    Article  CAS  Google Scholar 

  62. Roslind A, Knoop AS, Jensen MB, Johansen JS, Nielsen DL, Price PA, et al. YKL-40 protein expression is not a prognostic marker in patients with primary breast cancer. Breast Cancer Res Treat. 2008;112(2):275–85.

    Article  CAS  PubMed  Google Scholar 

  63. Lau SH, Sham JS, Xie D, Tzang CH, Tang D, Ma N, et al. Clusterin plays an important role in hepatocellular carcinoma metastasis. Oncogene. 2006;25(8):1242–50.

    Article  CAS  PubMed  Google Scholar 

  64. Mylin AK, Abildgaard N, Johansen JS, Andersen NF, Heickendorff L, Standal T, et al. High serum YKL-40 concentration is associated with severe bone disease in newly diagnosed multiple myeloma patients. Eur J Haematol. 2008;80(4):310–7.

    Article  CAS  PubMed  Google Scholar 

  65. Junker N, Johansen JS, Andersen CB, Kristjansen PE. Expression of YKL-40 by peritumoral macrophages in human small cell lung cancer. Lung cancer (Amsterdam, Netherlands). 2005;48(2):223–31.

    Article  Google Scholar 

  66. Wang Y, Ripa RS, Johansen JS, Gabrielsen A, Steinbruchel DA, Friis T, et al. YKL-40 a new biomarker in patients with acute coronary syndrome or stable coronary artery disease. Scand Cardiovasc J SCJ. 2008;42(5):295–302.

    Article  CAS  PubMed  Google Scholar 

  67. Kastrup J, Johansen JS, Winkel P, Hansen JF, Hildebrandt P, Jensen GB, et al. High serum YKL-40 concentration is associated with cardiovascular and all-cause mortality in patients with stable coronary artery disease. Eur Heart J. 2009;30(9):1066–72.

    Article  CAS  PubMed  Google Scholar 

  68. Nojgaard C, Host NB, Christensen IJ, Poulsen SH, Egstrup K, Price PA, et al. Serum levels of YKL-40 increases in patients with acute myocardial infarction. Coron Artery Dis. 2008;19(4):257–63.

    Article  PubMed  Google Scholar 

  69. Cintin C, Johansen JS, Christensen IJ, Price PA, Sorensen S, Nielsen HJ. High serum YKL-40 level after surgery for colorectal carcinoma is related to short survival. Cancer. 2002;95(2):267–74.

    Article  PubMed  Google Scholar 

  70. Jensen BV, Johansen JS, Price PA. High levels of serum HER-2/neu and YKL-40 independently reflect aggressiveness of metastatic breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2003;9(12):4423–34.

    CAS  Google Scholar 

  71. Johansen JS, Drivsholm L, Price PA, Christensen IJ. High serum YKL-40 level in patients with small cell lung cancer is related to early death. Lung cancer (Amsterdam, Netherlands). 2004;46(3):333–40.

    Article  Google Scholar 

  72. Brasso K, Christensen IJ, Johansen JS, Teisner B, Garnero P, Price PA, et al. Prognostic value of PINP, bone alkaline phosphatase, CTX-I, and YKL-40 in patients with metastatic prostate carcinoma. Prostate. 2006;66(5):503–13.

    Article  CAS  PubMed  Google Scholar 

  73. Bonneh-Barkay D, Bissel SJ, Wang G, Fish KN, Nicholl GC, Darko SW, et al. YKL-40, a marker of simian immunodeficiency virus encephalitis, modulates the biological activity of basic fibroblast growth factor. Am J Pathol. 2008;173(1):130–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang D, Lu JG, Wang Q, Du XL, Dong R, Wang P, et al. Increased immunohistochemical expression of YKL-40 in the spleen of patients with portal hypertension. Brazilian J Med Biol Res Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica [et al]. 2012;45(3):264–72.

    CAS  Google Scholar 

  75. Kwon JW, Kim TW, Cho SH, Min KU, Park HW. Serum YKL-40 levels are correlated with symptom severity in patients with allergic rhinitis. Allergy. 2011;66(9):1252–3.

    Article  PubMed  Google Scholar 

  76. Masoli M, Fabian D, Holt S, Beasley R. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy. 2004;59(5):469–78.

    Article  PubMed  Google Scholar 

  77. Beasley R, Crane J, Lai CK, Pearce N. Prevalence and etiology of asthma. J Allergy Clin Immunol. 2000;105(2 Pt 2):S466–72.

    Article  CAS  PubMed  Google Scholar 

  78. O'Sullivan SM. Asthma death, CD8+ T cells, and viruses. Proc Am Thorac Soc. 2005;2(2):162–5.

    Article  PubMed  Google Scholar 

  79. Busse WW, Lemanske Jr RF. Asthma. N Engl J Med. 2001;344(5):350–62.

    Article  CAS  PubMed  Google Scholar 

  80. Xu Q, Chai SJ, Qian YY, Zhang M, Wang K. Breast regression protein-39 (BRP-39) promotes dendritic cell maturation in vitro and enhances Th2 inflammation in murine model of asthma. Acta Pharmacol Sin. 2012;33(12):1525–32. Identifies the immunologic pathways of inflammation which CHI3L1 enhances during asthma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shuhui L, Mok YK, Wong WS. Role of mammalian chitinases in asthma. Int Arch Allergy Immunol. 2009;149(4):369–77.

    Article  CAS  PubMed  Google Scholar 

  82. Black JL. Asthma—more muscle cells or more muscular cells? Am J Respir Crit Care Med. 2004;169(9):980–1.

    Article  PubMed  Google Scholar 

  83. Hirst SJ, Martin JG, Bonacci JV, Chan V, Fixman ED, Hamid QA, et al. Proliferative aspects of airway smooth muscle. J Allergy Clin Immunol. 2004;114(2 Suppl):S2–17.

    Article  CAS  PubMed  Google Scholar 

  84. Duru S, Yuce G, Ulasli SS, Erdem M, Kizilgun M, Kara F. The relationship between serum YKL-40 levels and severity of asthma. Iranian J Allergy Asthma Immunol. 2013;12(3):247–53. Provides information regarding the association between serum YKL-40 levels clinical manifestation of asthma.

    CAS  Google Scholar 

  85. Jeffery PK. Remodeling in asthma and chronic obstructive lung disease. Am J Respir Crit Care Med. 2001;164(10 Pt 2):S28–38.

    Article  CAS  PubMed  Google Scholar 

  86. Carroll N, Elliot J, Morton A, James A. The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis. 1993;147(2):405–10.

    Article  CAS  PubMed  Google Scholar 

  87. Beasley R, Roche WR, Roberts JA, Holgate ST. Cellular events in the bronchi in mild asthma and after bronchial provocation. Am Rev Respir Dis. 1989;139(3):806–17.

    Article  CAS  PubMed  Google Scholar 

  88. Laitinen LA, Heino M, Laitinen A, Kava T, Haahtela T. Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis. 1985;131(4):599–606.

    CAS  PubMed  Google Scholar 

  89. Jeffery PK, Wardlaw AJ, Nelson FC, Collins JV, Kay AB. Bronchial biopsies in asthma. An ultrastructural, quantitative study and correlation with hyperreactivity. Am Rev Respir Dis. 1989;140(6):1745–53.

    Article  CAS  PubMed  Google Scholar 

  90. Gavett SH, Chen X, Finkelman F, Wills-Karp M. Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol. 1994;10(6):587–93.

    Article  CAS  PubMed  Google Scholar 

  91. Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, et al. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy J Brit Soc Allergy Clin Immunol. 2008;38(5):709–50.

    Article  CAS  Google Scholar 

  92. Medoff BD, Thomas SY, Luster AD. T cell trafficking in allergic asthma: the ins and outs. Annu Rev Immunol. 2008;26:205–32.

    Article  CAS  PubMed  Google Scholar 

  93. Ober C, Tan Z, Sun Y, Possick JD, Pan L, Nicolae R, et al. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N Engl J Med. 2008;358(16):1682–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kuepper M, Bratke K, Virchow JC. Chitinase-like protein and asthma. N Engl J Med. 2008;358(10):1073–5.

    Article  CAS  PubMed  Google Scholar 

  95. Lee CG, Elias JA. Role of breast regression protein-39/YKL-40 in asthma and allergic responses. Allergy, Asthma Immunol Res. 2010;2(1):20–7.

    Article  CAS  Google Scholar 

  96. March ME, Sleiman PM, Hakonarson H. Genetic polymorphisms and associated susceptibility to asthma. Int J General Med. 2013;6:253–65. Informative paper which introduces various SNPs of chi3l1 involved in asthma.

    Google Scholar 

  97. Sohn MH, Lee JH, Kim KW, Kim SW, Lee SH, Kim KE, et al. Genetic variation in the promoter region of chitinase 3- like 1 is associated with atopy. Am J Respir Crit Care Med. 2009;179(6):449–56.

    Article  CAS  PubMed  Google Scholar 

  98. Rathcke CN, Holmkvist J, Husmoen LL, Hansen T, Pedersen O, Vestergaard H, et al. Association of polymorphisms of the CHI3L1 gene with asthma and atopy: a populations-based study of 6514 Danish adults. PLoS One. 2009;4(7):e6106.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Brinchmann BC, Bayat M, Brøgger T, Muttuvelu DV, Tjønneland A, Sigsgaard T. A possible role of chitin in the pathogenesis of asthma and allergy. Ann Agric Environ Med. 2011;18(1):7–12.

  100. Reese TA, Liang HE, Tager AM, Luster AD, Van Rooijen N, Voehringer D, Locksley RM. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature. 2007 3;447(7140):92–6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Pieter Bussink.

Ethics declarations

Conflict of Interest

Drs. Elieh Ali Komi, Kazemi, and Bussink declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Asthma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komi, D.E.A., Kazemi, T. & Bussink, A.P. New Insights Into the Relationship Between Chitinase-3-Like-1 and Asthma. Curr Allergy Asthma Rep 16, 57 (2016). https://doi.org/10.1007/s11882-016-0637-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-016-0637-2

Keywords

Navigation