Skip to main content
Log in

Allergen Ligands in the Initiation of Allergic Sensitization

  • ALLERGENS (RK BUSH AND JA WOODFOLK, SECTION EDITORS)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

As investigations into the innate immune responses that lead to allergic sensitization become better defined, there is a need to determine how allergens could interact with pattern recognition receptors that bind non-proteinaceous moieties. Many important allergens are not covalently bound to lipid or carbohydrate, but have structures belonging to lipid, glycan and glycolipid-binding families. These include ML-domain proteins, lipopolysaccharide-binding/cell permeability-increasing proteins, von Ebner gland lipocalins, salivary lipocalins/major urinary proteins, plant pathogenesis-related proteins PR-5 and -10, uteroglobins, non-specific lipid transfer proteins, large lipid transfer proteins and proteins with chitin and other carbohydrate-binding modules. The binding expected is overviewed with regard to importance of the allergens and their ability to elicit responses proposed from experimental models. The evidence compiled showing that allergens from the same source sensitize for different types of adaptive immune responses supports the concept that individual allergens within these sources have their own distinctive interactions with innate immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Wills-Karp M. Current allergen-specific pattern recognition receptor pathways. Curr Opin Immunol. 2010;22(6):777–82.

    CAS  PubMed  Google Scholar 

  2. Ruiter B, Shreffler WG. Innate immunostimulatory properties of allergens and their relevance to food allergy. Semin Immunopathol. 2012;34(5):617–32. Review of innate immunity and allergy, especially food allergy.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Salazar F, Ghaemmaghami AM. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells. Front Immunol. 2013;4:356. Review of how innate immunity instigated by dendritic and epithelial cells can affect responses to allergens overview of cellular experiments conducted to date.

    PubMed Central  PubMed  Google Scholar 

  4. Thomas WR. Innate affairs of allergens. Clin Exp Allergy. 2013;43(2):152–63. Analyzes the innate immune responses proposed for allergic sensitization in the context of the known properties of allergens and immune responses to the allergens.

    CAS  PubMed  Google Scholar 

  5. Licona-Limon P, Kim LK, Palm NW, et al. Th2 allergy and group 2 innate lymphoid cells. Nat Immunol. 2013;14(6):536–42.

    CAS  PubMed  Google Scholar 

  6. Mata-Haro V, Cekic C, Martin M, et al. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science. 2007;316(5831):1628–32.

    CAS  PubMed  Google Scholar 

  7. Huber JP, Farrar JD. Regulation of effector and memory T-cell functions by type I interferon. Immunology. 2011;132(4):466–74. Reviews how type 1 interferons are important for augmenting Th2 responses.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Kim YK, Oh SY, Jeon SG, et al. Airway exposure levels of lipopolysaccharide determine type 1 versus type 2 experimental asthma. J Immunol. 2007;178(8):5375–82.

    CAS  PubMed  Google Scholar 

  9. Delfino RJ, Staimer N, Tjoa T. Personal endotoxin exposure in a panel study of school children with asthma. Environ Health. 2011;10:69.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Condon TV, Sawyer RT, Fenton MJ, et al. Lung dendritic cells at the innate-adaptive immune interface. J Leukoc Biol. 2011;90(5):883–95. doi:10.1189/jlb.0311134.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Gazi U, Martinez-Pomares L. Influence of the mannose receptor in host immune responses. Immunobiology. 2009;214(7):554–61.

    CAS  PubMed  Google Scholar 

  12. Saijo S, Iwakura Y. Dectin-1 and Dectin-2 in innate immunity against fungi. Int Immunol. 2011;23(8):467–72.

    CAS  PubMed  Google Scholar 

  13. Brown DG. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol. 2006;6(1):33–43.

    CAS  PubMed  Google Scholar 

  14. Barrett NA, Boyce JA. Activation of group 2 innate lymphoid cells: a new role for cysteinyl leukotrienes. J Allergy Clin Immunol. 2013;132(1):214–6.

    CAS  PubMed  Google Scholar 

  15. Weghofer M, Grote M, Resch Y, et al. Identification of Der p 23, a peritrophin-like protein, as a new major Dermatophagoides pteronyssinus allergen associated with the peritrophic matrix of mite fecal pellets. J Immunol. 2013;190(7):3059–67. First description of a new major aeroallergen with chitin-binding properties.

    CAS  PubMed  Google Scholar 

  16. Batard T, Hrabina A, Bi XZ, et al. Production and proteomic characterization of pharmaceutical-grade Dermatophagoides pteronyssinus and Dermatophagoides farinae extracts for allergy vaccines. Int Arch Allergy Immunol. 2006;140(4):295–305.

    PubMed  Google Scholar 

  17. Kidon MI, Chiang WC, Liew WK, et al. Mite component-specific IgE repertoire and phenotypes of allergic disease in childhood: the tropical perspective. Pediatr Allergy Immunol. 2011;22(2):202–10.

    PubMed  Google Scholar 

  18. Hales BJ, Martin AC, Pearce LJ, et al. IgE and IgG anti-house dust mite specificities in allergic disease. J Allergy Clin Immunol. 2006;118(2):361–7.

    CAS  PubMed  Google Scholar 

  19. Epton MJ, Smith W, Hales BJ, et al. Non-allergenic antigen in allergic sensitization: responses to the mite ferritin heavy chain antigen by allergic and non-allergic subjects. Clin Exp Allergy. 2002;32(9):1341–7.

    CAS  PubMed  Google Scholar 

  20. An S, Chen L, Long C, et al. Dermatophagoides farinae allergens diversity identification by proteomics. Mol Cell Proteomics. 2013;12(7):1818–28.

    CAS  PubMed  Google Scholar 

  21. Hales BJ, Shen H, Thomas WR. Cytokine responses to Der p 1 and Der p 7: house dust mite allergens with different IgE-binding activities. Clin Exp Allergy. 2000;30(7):934–43.

    CAS  PubMed  Google Scholar 

  22. Oseroff C, Sidney J, Kotturi MF, et al. Molecular determinants of T cell epitope recognition to the common Timothy grass allergen. J Immunol. 2010;185(2):943–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Oseroff C, Sidney J, Tripple V, et al. Analysis of T cell responses to the major allergens from German cockroach: epitope specificity and relationship to IgE production. J Immunol. 2012;189(2):679–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Schulten V, Greenbaum JA, Hauser M, et al. Previously undescribed grass pollen antigens are the major inducers of T helper 2 cytokine-producing T cells in allergic individuals. Proc Natl Acad Sci U S A. 2013;110(9):3459–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Lienard D, Tran Dinh O, et al. Suspension-cultured BY-2 tobacco cells produce and mature immunologically active house dust mite allergens. Plant Biotechnol J. 2007;5(1):93–108.

    CAS  PubMed  Google Scholar 

  26. Royer PJ, Emara M, Yang C, et al. The mannose receptor mediates the uptake of diverse native allergens by dendritic cells and determines allergen-induced T cell polarization through modulation of IDO activity. J Immunol. 2010;185(3):1522–31.

    CAS  PubMed  Google Scholar 

  27. Al-Ghouleh A, Johal R, Sharquie IK, et al. The glycosylation pattern of common allergens: the recognition and uptake of Der p 1 by epithelial and dendritic cells is carbohydrate dependent. PLoS One. 2012;7(3):e33929.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Swoboda I, Jilek A, Ferreira F, et al. Isoforms of Bet v 1, the major birch pollen allergen, analyzed by liquid chromatography, mass spectrometry, and cDNA cloning. J Biol Chem. 1995;270(6):2607–13.

    CAS  PubMed  Google Scholar 

  29. van Oort E, Lerouge P, de Heer PG, et al. Substitution of Pichia pastoris-derived recombinant proteins with mannose containing O- and N-linked glycans decreases specificity of diagnostic tests. Int Arch Allergy Immunol. 2004;135(3):187–95.

    PubMed  Google Scholar 

  30. Wopfner N, Gadermaier G, Egger M, et al. The spectrum of allergens in ragweed and mugwort pollen. Int Arch Allergy Immunol. 2005;138(4):337–46.

    CAS  PubMed  Google Scholar 

  31. Li J, Shefcheck K, Callahan J, et al. Primary sequence and site-selective hydroxylation of prolines in isoforms of a major peanut allergen protein Ara h 2. Protein Sci. 2010;19(1):174–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Trompette A, Divanovic S, Visintin A, et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature. 2009;457(7229):585–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Osterlund C, Grönlund H, Gafvelin G, et al. Non-proteolytic aeroallergens from mites, cat and dog exert adjuvant-like activation of bronchial epithelial cells. Int Arch Allergy Immunol. 2011;155(2):111–8.

    PubMed  Google Scholar 

  34. Stampfli MR, Wiley RE, Neigh GS, et al. GM-CSF transgene expression in the airway allows aerosolized ovalbumin to induce allergic sensitization in mice. J Clin Invest. 1998;102(9):1704–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Holt PG, Batty JE, Turner KJ. Inhibition of specific IgE responses in mice by pre-exposure to inhaled antigen. Immunology. 1981;42(3):409–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Keber MM, Gradisar H, Jerala R. MD-2 and Der p 2—a tale of two cousins or distant relatives? J Endotoxin Res. 2005;11(3):186–92.

    CAS  PubMed  Google Scholar 

  37. Ichikawa S, Takai T, Yashiki T, et al. Lipopolysaccharide binding of the mite allergen Der f 2. Genes Cells. 2009;14(9):1055–65.

    CAS  PubMed  Google Scholar 

  38. Kondo Y, Ikeda K, Tokuda N, et al. TLR4-MD-2 complex is negatively regulated by an endogenous ligand, globotetraosylceramide. Proc Natl Acad Sci U S A. 2013;110(12):4714–9. This Article describes endogenous non-LPS ligands for MD-2 including glycans that should be considered relevant to natural Der p 2 ligands.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Wang X, Loram LC, Ramos K, et al. Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc Natl Acad Sci U S A. 2012;109(16):6325–30. This article describes an alternative non-LPS ligand of MD-2 that activates Th2 responses and thus should be considered for its relevance to Der p 2 inducing Th2 responses.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Kelschenbach J, Ninkovic J, Wang J, et al. Morphine withdrawal inhibits IL-12 induction in a macrophage cell line through a mechanism that involves cAMP. J Immunol. 2008;180(6):3670–9.

    CAS  PubMed  Google Scholar 

  41. Eckert JK, Kim YJ, Kim JI, et al. The crystal structure of lipopolysaccharide binding protein reveals the location of a frequent mutation that impairs innate immunity. Immunity. 2013;39(4):647–60.

    CAS  PubMed  Google Scholar 

  42. Shen HD, Tam MF, Huang CH, et al. Homology modeling and monoclonal antibody binding of the Der f 7 dust mite allergen. Immunol Cell Biol. 2011;89(2):225–30.

    CAS  PubMed  Google Scholar 

  43. Bingle L, Barnes FA, Lunn H, et al. Characterisation and expression of SPLUNC2, the human orthologue of rodent parotid secretory protein. Histochem Cell Biol. 2009;132(3):339–49.

    CAS  PubMed  Google Scholar 

  44. Abdolhosseini M, Sotsky JB, Shelar AP, et al. Human parotid secretory protein is a lipopolysaccharide-binding protein: identification of an anti-inflammatory peptide domain. Mol Cell Biochem. 2012;359(1–2):1–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Mueller GA, Edwards LL, Aloor JJ, et al. The structure of the dust mite allergen Der p 7 reveals similarities to innate immune proteins. J Allergy Clin Immunol. 2010;125(4):909–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Tan KW, Jobichen C, Ong TC, et al. Crystal structure of Der f 7, a dust mite allergen from Dermatophagoides farinae. PLoS One. 2012;7(9):e44850.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Vance SJ, McDonald RE, Cooper A, et al. The structure of latherin, a surfactant allergen protein from horse sweat and saliva. J R Soc Interface. 2013;10(85):20130453.

    PubMed  Google Scholar 

  48. Mattsson L, Lundgren T, Olsson P, et al. Molecular and immunological characterization of Can f 4: a dog dander allergen cross-reactive with a 23 kDa odorant-binding protein in cow dander. Clin Exp Allergy. 2010;40(8):1276–87.

    CAS  PubMed  Google Scholar 

  49. Smith W, O'Neil SE, Hales BJ, et al. Two newly identified cat allergens: the von Ebner gland protein Fel d 7 and the latherin-like protein Fel d 8. Int Arch Allergy Immunol. 2011;156(2):159–70.

    CAS  PubMed  Google Scholar 

  50. Hales BJ, Chai LY, Hazell L, et al. IgE and IgG binding patterns and T-cell recognition of Fel d 1 and non-Fel d 1 cat allergens. J Allergy Clin Immunol Pract. 2013;1(6):656–65. This reports compares the IgE responses to different cat allergens made by cat-allergic subjects and shows that for many Fe d 1 is not the main allergen, so the lipocalin allergens and the putative lipopolysaccharide-binding allergen must (in the absence of another mechanisms) initiate their own adaptive responses.

    PubMed  Google Scholar 

  51. Gutierrez AM, Nöbauer K, Soler L, et al. Detection of potential markers for systemic disease in saliva of pigs by proteomics: a pilot study. Vet Immunol Immunopathol. 2013;151(1–2):73–82.

    CAS  PubMed  Google Scholar 

  52. Breustedt DA, Korndörfer IP, Redl B, et al. The 1.8-A crystal structure of human tear lipocalin reveals an extended branched cavity with capacity for multiple ligands. J Biol Chem. 2005;280(1):484–93.

    CAS  PubMed  Google Scholar 

  53. Dartt DA. Tear lipocalin: structure and function. Ocul Surf. 2011;9(3):126–38.

    PubMed  Google Scholar 

  54. Abduragimov AR, Gasymov OK, Yusifov TN, et al. Functional cavity dimensions of tear lipocalin. Curr Eye Res. 2000;21(4):824–32.

    CAS  PubMed  Google Scholar 

  55. Dean AW, Glasgow BJ. Mass spectrometric identification of phospholipids in human tears and tear lipocalin. Investig Ophthalmol Vis Sci. 2012;53(4):1773–82.

    CAS  Google Scholar 

  56. Cruz D, Watson AD, Miller CS, et al. Host-derived oxidized phospholipids and HDL regulate innate immunity in human leprosy. J Clin Invest. 2008;118(8):2917–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Weismann D, Binder CJ. The innate immune response to products of phospholipid peroxidation. Biochim Biophys Acta. 2012;1818(10):2465–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Baranova IN, Kurlander R, Bocharov AV, et al. Role of human CD36 in bacterial recognition, phagocytosis, and pathogen-induced JNK-mediated signaling. J Immunol. 2008;181(10):7147–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Sharif O, Matt U, Saluzzo S, et al. The scavenger receptor CD36 downmodulates the early inflammatory response while enhancing bacterial phagocytosis during pneumococcal pneumonia. J Immunol. 2013;190(11):5640–8.

    CAS  PubMed  Google Scholar 

  60. Grabitzki J, Lochnit G. Immunomodulation by phosphocholine–biosynthesis, structures and immunological implications of parasitic PC-epitopes. Mol Immunol. 2009;47(2–3):149–63.

    CAS  PubMed  Google Scholar 

  61. den Hartog G, van Altena C, Savelkoul HF, et al. The mucosal factors retinoic acid and TGF-β1 induce phenotypically and functionally distinct dendritic cell types. Int Arch Allergy Immunol. 2013;162(3):225–36.

    Google Scholar 

  62. Murty VL, Slomiany BL, Slomiany A, et al. Lipid composition of squirrel monkey (Saimiri sciureus) saliva. Comp Biochem Physiol B. 1985;81(4):823–6.

    CAS  PubMed  Google Scholar 

  63. Hesselink RW, Findlay JB. Expression, characterization and ligand specificity of lipocalin-1 interacting membrane receptor (LIMR). Mol Membr Biol. 2013;30(5–6):327–37.

    CAS  PubMed  Google Scholar 

  64. Wojnar P, Lechner M, Merschak P, et al. Molecular cloning of a novel lipocalin-1 interacting human cell membrane receptor using phage display. J Biol Chem. 2001;276(23):20206–12.

    CAS  PubMed  Google Scholar 

  65. Kolleck I, Sinha P, Rustow B. Vitamin E as an antioxidant of the lung: mechanisms of vitamin E delivery to alveolar type II cells. Am J Respir Crit Care Med. 2002;166(12 Pt 2):S62–6.

    PubMed  Google Scholar 

  66. Unkel B, Hoegner K, Clausen BE, et al. Alveolar epithelial cells orchestrate DC function in murine viral pneumonia. J Clin Invest. 2012;122(10):3652–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Nilsson OB, Binnmyr J, Zoltowska A, et al. Characterization of the dog lipocalin allergen Can f 6: the role in cross-reactivity with cat and horse. Allergy. 2012;67(6):751–7. Recent elucidation of the allergic responses to newly recognized lipocalin allergens of cats and dogs has increased the appreciation of their importance for sensitization and their further importance as a ubiquitous class of cross-reactive domestic allergens.

    CAS  PubMed  Google Scholar 

  68. Krop EJ, Matsui EC, Sharrow SD, et al. Recombinant major urinary proteins of the mouse in specific IgE and IgG testing. Int Arch Allergy Immunol. 2007;144(4):296–304.

    CAS  PubMed  Google Scholar 

  69. Marchese S, Pes D, Scaloni A, et al. Lipocalins of boar salivary glands binding odours and pheromones. Eur J Biochem. 1998;252(3):563–8.

    CAS  PubMed  Google Scholar 

  70. Spinelli S, Vincent F, Pelosi P, et al. Boar salivary lipocalin. Three-dimensional X-ray structure and androsterol/androstenone docking simulations. Eur J Biochem. 2002;269(10):2449–56.

    CAS  PubMed  Google Scholar 

  71. Herre J, Grönlund H, Brooks H, et al. Allergens as immunomodulatory proteins: the cat dander protein Fel d 1 enhances TLR activation by lipid ligands. J Immunol. 2013;191(4):1529–35.

    CAS  PubMed  Google Scholar 

  72. Bouman A, Heineman MJ, Faas MM. Sex hormones and the immune response in humans. Hum Reprod Update. 2005;11(4):411–23.

    CAS  PubMed  Google Scholar 

  73. Papes F, Logan DW, Stowers L. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell. 2010;141(4):692–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Chamero P, Marton TF, Logan DW, et al. Identification of protein pheromones that promote aggressive behaviour. Nature. 2007;450(7171):899–902.

    CAS  PubMed  Google Scholar 

  75. Tan YW, Chan SL, Ong TC, et al. Structures of two major allergens, Bla g 4 and Per a 4, from cockroaches and their IgE binding epitopes. J Biol Chem. 2009;284(5):3148–57.

    CAS  PubMed  Google Scholar 

  76. Satinover SM, Reefer AJ, Pomes A, et al. Specific IgE and IgG antibody-binding patterns to recombinant cockroach allergens. J Allergy Clin Immunol. 2005;115(4):803–9.

    CAS  PubMed  Google Scholar 

  77. Seutter von Loetzen C, Hoffmann T, Hartl MJ, et al. Secret of the major birch pollen allergen Bet v 1: identification of the physiological ligand. Biochem J. 2014;457(3):379–90. This landmark paper is the first description of a natural allergen with its natural ligand.

    CAS  PubMed  Google Scholar 

  78. Smole U, Balazs N, Hoffmann-Sommergruber K, et al. Differential T-cell responses and allergen uptake after exposure of dendritic cells to the birch pollen allergens Bet v 1.0101, Bet v 1.0401 and Bet v 1.1001. Immunobiology. 2010;215(11):903–9.

    CAS  PubMed  Google Scholar 

  79. Kofler S, Asam C, Eckhard U, et al. Crystallographically mapped ligand binding differs in high and low IgE binding isoforms of birch pollen allergen bet v 1. J Mol Biol. 2012;422(1):109–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Kaiser L, Velickovic TC, Badia-Martinez D, et al. Structural characterization of the tetrameric form of the major cat allergen Fel d 1. J Mol Biol. 2007;370(4):714–27.

    CAS  PubMed  Google Scholar 

  81. Velickovic TC, Thunberg S, Polovic N, et al. Low levels of endotoxin enhance allergen-stimulated proliferation and reduce the threshold for activation in human peripheral blood cells. Int Arch Allergy Immunol. 2008;146(1):1–10.

    PubMed  Google Scholar 

  82. Mittag D, Varese N, Scholzen A, et al. TLR ligands of ryegrass pollen microbial contaminants enhance Th1 and Th2 responses and decrease induction of Foxp3(hi) regulatory T cells. Eur J Immunol. 2013;43(3):723–33.

    CAS  PubMed  Google Scholar 

  83. Mukherjee AB, Zhang Z, Chilton BS. Uteroglobin: a steroid-inducible immunomodulatory protein that founded the Secretoglobin superfamily. Endocr Rev. 2007;28(7):707–25.

    CAS  PubMed  Google Scholar 

  84. Egger M, Hauser M, Mari A, et al. The role of lipid transfer proteins in allergic diseases. Curr Allergy Asthma Rep. 2010;10(5):326–35.

    CAS  PubMed  Google Scholar 

  85. Kader JC. Lipid-transfer proteins. Annu Rev Plant Physiol Plant Mol Biol. 1996;47:627–54.

    CAS  PubMed  Google Scholar 

  86. Smolenaars MM, Madsen O, Rodenburg KW, et al. Molecular diversity and evolution of the large lipid transfer protein superfamily. J Lipid Res. 2007;48(3):489–502.

    CAS  PubMed  Google Scholar 

  87. Fujikawa A, Ishimaru N, Seto A, et al. Cloning and characterization of a new allergen, Mag 3, from the house dust mite, Dermatophagoides farinae: cross-reactivity with high-molecular-weight allergen. Mol Immunol. 1996;33(3):311–9.

    CAS  PubMed  Google Scholar 

  88. Weghofer M, Thomas WR, Kronqvist M, et al. Variability of IgE reactivity profiles among European mite allergic patients. Eur J Clin Investig. 2008;38(12):959–65.

    CAS  Google Scholar 

  89. Blank S, Seismann H, McIntyre M, et al. Vitellogenins are new high molecular weight components and allergens (Api m 12 and Ves v 6) of Apis mellifera and Vespula vulgaris venom. PLoS One. 2013;8(4):e62009.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Shimizu Y, Nakamura A, Kishimura H, et al. Major allergen and its IgE cross-reactivity among salmonid fish roe allergy. J Agric Food Chem. 2009;57(6):2314–9.

    CAS  PubMed  Google Scholar 

  91. Mueller GA, Gosavi RA, Krahn JM, et al. Der p 5 crystal structure provides insight into the group 5 dust mite allergens. J Biol Chem. 2010;285(33):25394–401.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Naik MT, Chang CF, Kuo IC, et al. Roles of structure and structural dynamics in the antibody recognition of the allergen proteins: an NMR study on Blomia tropicalis major allergen. Structure. 2008;16(1):125–36.

    CAS  PubMed  Google Scholar 

  93. Tan KW, Ong TC, Gao YF, et al. NMR structure and IgE epitopes of Blo t 21, a major dust mite allergen from Blomia tropicalis. J Biol Chem. 2012;287(41):34776–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Khemili S, Kwasigroch JM, Hamadouche T, et al. Modelling and bioinformatics analysis of the dimeric structure of house dust mite allergens from families 5 and 21: Der f 5 could dimerize as Der p 5. J Biomol Struct Dyn. 2012;29(4):663–75.

    CAS  PubMed  Google Scholar 

  95. Yennawar NH, Li LC, Dudzinski DM, et al. Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci U S A. 2006;103(40):14664–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Trevino MA, Palomares O, Castrillo I, et al. Solution structure of the C-terminal domain of Ole e 9, a major allergen of olive pollen. Protein Sci. 2008;17(2):371–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Barral P, Suárez C, Batanero E, et al. An olive pollen protein with allergenic activity, Ole e 10, defines a novel family of carbohydrate-binding modules and is potentially implicated in pollen germination. Biochem J. 2005;390(Pt 1):77–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Rodríguez R, Villalba M, Batanero E, et al. Olive pollen recombinant allergens: value in diagnosis and immunotherapy. J Investig Allergol Clin Immunol. 2007;17 Suppl 1:4–10.

    PubMed  Google Scholar 

  99. Shani N, Shani Z, Shoseyov O, et al. Oxidized cellulose binding to allergens with a carbohydrate-binding module attenuates allergic reactions. J Immunol. 2011;186(2):1240–7.

    CAS  PubMed  Google Scholar 

  100. Karra-Châabouni M, Bouaziz I, Boufi S, et al. Physical immobilization of Rhizopus oryzae lipase onto cellulose substrate: activity and stability studies. Colloids Surf B Biointerfaces. 2008;66(2):168–77.

    PubMed  Google Scholar 

  101. Trudel J, Grenier J, Potvin C, et al. Several thaumatin-like proteins bind to beta-1,3-glucans. Plant Physiol. 1998;118(4):1431–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Palacín A, Rivas LA, Gómez-Casado C, et al. The involvement of thaumatin-like proteins in plant food cross-reactivity: a multicenter study using a specific protein microarray. PLoS ONE. 2012;7(9):e44088.

    PubMed Central  PubMed  Google Scholar 

  103. Lee CG, Da Silva CA, Dela Cruz CS, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011;73:479–501.

    CAS  PubMed  Google Scholar 

  104. Da Silva CA, Pochard P, Lee CG, et al. Chitin particles are multifaceted immune adjuvants. Am J Respir Crit Care Med. 2010;182(12):1482–91.

    PubMed Central  PubMed  Google Scholar 

  105. Arakane Y, Zhu Q, Matsumiya M, et al. Properties of catalytic, linker and chitin-binding domains of insect chitinase. Insect Biochem Mol Biol. 2003;33(6):631–48.

    CAS  PubMed  Google Scholar 

  106. Giovanini MP, Saltzmann KD, Puthoff DP, et al. A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly. Mol Plant Pathol. 2007;8(1):69–82.

    CAS  PubMed  Google Scholar 

  107. Elvin CM, Vuocolo T, Pearson RD. Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina. cDNA and deduced amino acid sequences. J Biol Chem. 1996;271(15):8925–35.

    CAS  PubMed  Google Scholar 

  108. Ebo DG, Hagendorens MM, De Knop KJ, et al. Component-resolved diagnosis from latex allergy by microarray. Clin Exp Allergy. 2010;40(2):348–58.

    CAS  PubMed  Google Scholar 

  109. Karisola P, Kotovuori A, Poikonen S, et al. Isolated hevein-like domains, but not 31-kd endochitinases, are responsible for IgE-mediated in vitro and in vivo reactions in latex-fruit syndrome. J Allergy Clin Immunol. 2005;115(3):598–605.

    CAS  PubMed  Google Scholar 

  110. McCall C, Hunter S, Stedman K, et al. Characterization and cloning of a major high molecular weight house dust mite allergen (Der f 15) for dogs. Vet Immunol Immunopathol. 2001;78(3–4):231–47.

    CAS  PubMed  Google Scholar 

  111. Hales BJ, Elliot CE, Chai LY, et al. Quantitation of IgE binding to the chitinase and chitinase-like house dust mite allergens Der p 15 and Der p 18 compared to the major and mid-range allergens. Int Arch Allergy Immunol. 2013;160(3):233–40. The paper shows that IgE antibodies to the chitin binding allergens of HDM correlate with each other but not to Der p 1,2,57 7 that all correlate with each other. IgE responses to groups of allergens from the same source accordingly must be independently regulated.

    CAS  PubMed  Google Scholar 

  112. O'Neil SE, Heinrich TK, Hales BJ, et al. The chitinase allergens Der p 15 and Der p 18 from Dermatophagoides pteronyssinus. Clin Exp Allergy. 2006;36(6):831–9.

    PubMed  Google Scholar 

  113. Weber E, Hunter S, Stedman K, et al. Identification, characterization, and cloning of a complementary DNA encoding a 60-kd house dust mite allergen (Der f 18) for human beings and dogs. J Allergy Clin Immunol. 2003;112(1):79–86.

    CAS  PubMed  Google Scholar 

  114. Zakzuk J, Benedetti I, Fernández-Caldas E, et al. The influence of chitin on the immune response to the house dust mite allergen blo t 12. Int Arch Allergy Immunol. 2013;163(2):119–29.

    PubMed  Google Scholar 

  115. Hales BJ, Hazell LA, Smith W, et al. Genetic variation of Der p 2 allergens: effects on T cell responses and immunoglobulin E binding. Clin Exp Allergy. 2002;32(10):1461–7.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Wayne R. Thomas has received research grant support from the Australian National Health and Medical Research Council.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by the author. With regard to the author’s research cited in this paper, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne R. Thomas.

Additional information

This article is part of the Topical Collection on Allergens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, W.R. Allergen Ligands in the Initiation of Allergic Sensitization. Curr Allergy Asthma Rep 14, 432 (2014). https://doi.org/10.1007/s11882-014-0432-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-014-0432-x

Keywords

Navigation