Skip to main content

Advertisement

Log in

Emerging Role of Human Basophil Biology in Health and Disease

  • IMMUNE DEFICIENCY AND DYSREGULATION (DP HUSTON, SECTION EDITOR)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Basophils have emerged in recent years as a small but potent subpopulation of leukocytes capable of bridging innate and adaptive immunity. They can be activated through IgE-dependent and IgE-independent mechanisms to release preformed mediators and to produce Th2 cytokines. In addition to their role in protective immunity to helminths, basophils are major participants in allergic reactions as diverse as anaphylaxis and immediate hypersensitivity reactions, late-phase hypersensitivity reactions, and delayed hypersensitivity reactions. Additionally, basophils have been implicated in the pathophysiology of autoimmune diseases such as lupus nephritis and rheumatoid arthritis, and the modulation of immune responses to bacterial infections, as well as being a feature of myelogenous leukemias. Distinct signals for activation, degranulation, transendothelial migration, and immune regulation are being defined, and demonstrate the important role of basophils in promoting a Th2 microenvironment. These mechanistic insights are driving innovative approaches for diagnostic testing and therapeutic targeting of basophils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as • Of Importance

  1. Chirumbolo S. State-of-the-art review about basophil research in immunology and allergy: is the time right to treat these cells with the respect they deserve? Blood Transfus. 2012;10:148–64.

    PubMed Central  PubMed  Google Scholar 

  2. Durrani SR, Montville DJ, Pratt AS, et al. Innate immune responses to rhinovirus are reduced by the high-affinity IgE receptor in allergic asthmatic children. J Allergy Clin Immunol. 2012;130(2):489–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Siracusa MC, Artis D. Basophil functions during type 2 inflammation: initiators, regulators and effectors. Open Allergy J. 2010;3:46–51.

    Article  CAS  Google Scholar 

  4. Wang H, Fang Y, Barrenas F, et al. Allergen challenge of peripheral blood mononuclear cells from patients with seasonal allergic rhinitis increases IL-17RB, which regulates basophil apoptosis and degranulation Clinical & Experimental Allergy. Clin Et Exp Allergy. 2010;40:1194–202.

    Article  CAS  Google Scholar 

  5. Leung DYM, Boguniewicz M, Howell MD, et al. New insights into atopic dermatitis. J Clin Invest. 2004;113:651–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Dvorak HF, Hammond ME, Colvin RB, et al. Systemic expression of cutaneous basophil hypersensitivity. J Immunol. 1977;118:1549–57.

    CAS  PubMed  Google Scholar 

  7. Dvorak AM, Mihm MC, Dvorak HF. Degranulation of basophilic leukocytes in allergic contact dermatitis reactions in man. J Immunol. 1976;116:687–95.

    CAS  PubMed  Google Scholar 

  8. Dvorak HF, Mihm MC. Basophilic leukocytes in allergic contact dermatitis. J Exp Med. 1972;135:235–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sabato V, Verweij MM, Bridts CH, et al. CD300a is expressed on human basophils and seems to inhibit IgE/FcεRI-dependent anaphylactic degranulation. Clin Cytom. 2012;82B:132–8.

    Article  CAS  Google Scholar 

  10. Sokol CL, Medzhitov R. Emerging functions of basophils in protective and allergic immune responses. Mucosal Immunol. 2010;3(2):129–37. This review explained the role of basophils in promoting Th2 immune responses.

    Article  CAS  PubMed  Google Scholar 

  11. Siracusa MC, Saenz SA, Hill DA, et al. TSLP promotes IL-3-independent basophils hematopoiesis and type 2 inflammation. Nature. 2012;477:229–33.

    Article  Google Scholar 

  12. Saenz SA, Noti M, Artis D. Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. Trends Immunol. 2010;31(11):407–13.

    Article  CAS  PubMed  Google Scholar 

  13. Gibbs BF, Haas H, Falcone FH, et al. Purified human peripheral blood release interleukin-13 and preformed interleukin-4 following immunological activation. Eur J Immunol. 1996;26:2493–8.

    Article  CAS  PubMed  Google Scholar 

  14. MacGlashan Jr DW, White JM, Huang SK, et al. Secretion of interleukin-4 from basophils; the relationship between IL-4 mRNA and protein in resting and stimulated basophils. J Immunol. 1994;152:3006–16.

    CAS  PubMed  Google Scholar 

  15. Min B, Prout M, Hu-Li J, et al. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J Exp Med. 2004;200:507–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Schroeder JT, MacGlashan Jr DW, Lichtenstein LM. Human basophils: mediator release and cytokine production. Adv Immunol. 2001;77:93–122.

    Article  CAS  PubMed  Google Scholar 

  17. Kim S, Shen T, Min B. Basophils can directly present or cross-present antigen to CD8 lymphocytes and alter CD8 T cell differentiation into IL-10-producing phenotypes. J Immunol. 2009;183:3033–9.

    Article  CAS  PubMed  Google Scholar 

  18. Perrigoue JG, Saenz SA, Siracusa MC, et al. MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol. 2009;10:697–705.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Yoshimoto T, Yasuda K, Tanaka H, et al. Basophils contribute to Th2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat Immunol. 2009;10:706–12.

    Article  CAS  PubMed  Google Scholar 

  20. Sokol CL, Chu NQ, Yu S, et al. Basophils function as antigen-presenting cells an allergen-induced T helper type 2 response. Nat Immunol. 2009;10:713–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Khodoun MV, Orekhova T, Potter C, et al. Basophils initiate IL-4 production during a memory T-dependent response. J Exp Med. 2004;200:857–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kim S, Prout M, Ramshaw H, et al. Cutting edge: basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3. J Immunol. 2010;184:1143–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Galli SJ, Franco CB. Basophils are back! Immunity. 2008;28:495–7.

    Article  CAS  PubMed  Google Scholar 

  24. Voehringer D, Shinkai K, Locksley RM. Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity. 2004;20:267–77.

    Article  CAS  PubMed  Google Scholar 

  25. Min B. Basophils: what they ‘can do’ versus what they ‘actually do’. Nat Immunol. 2008;9:1333–9.

    Article  CAS  PubMed  Google Scholar 

  26. Min B. Basophils induce Th2 immunity: is this final answer? Virulence. 2010;1:399–401.

    Article  PubMed  Google Scholar 

  27. Sokol CL, Barton GM, Farr AG, Medzhitov R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol. 2007;9:310–8.

    Article  Google Scholar 

  28. Chen K, Xu W, Wilson M, et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell–stimulating programs in basophils. Nat Immunol. 2009;10:889–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Charles N, Hardwick D, Daugas E, et al. Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat Med. 2010;16(6):701–7. This was the first report potentially linking basophils to the pathogenesis of autoimmune lupus nephritis.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Warde N. Activated basophils exacerbate lupus nephritis by amplifying production of autoreactive IgE. Nat Rev Rheumatol. 2010;6(8):438.

    Article  PubMed  Google Scholar 

  31. Schuerwegh JM, Ioan-Facsinay A, Dorjee AL, et al. Evidence for a functional role of IgE anticitrullinated protein antibodies in rheumatoid arthritis. PNAS. 2010;107:2586–91. This article provides the first evidence for the potential role of basophils in rheumatoid arthritis.

    Article  CAS  PubMed  Google Scholar 

  32. Anyan WK, Kumagi T, Shimogawara RF, et al. Schistosome eggs have a direct role in the induction of basophils capable of a high level of IL-4 production: comparative study of single- and bisexual infection of Schistosoma mansoni in vivo. Trop Med Health. 2010;38(1):13–22.

    Article  Google Scholar 

  33. Pelleau S, Diop S, Dia Badiane M, et al. Enhanced basophil reactivities during severe malaria and their relationship with the plasmodial histamine releasing factor PfTCTP. Infect Immune. 2012;80(8):2963–70.

    Article  CAS  Google Scholar 

  34. Cerny-Reiterer S, Ghanim V, Hoermann G, et al. Identification of basophils as a major source of hepatocyte growth factor in chronic myeloid leukemia: a novel mechanism of BCR-ABL1 – independent disease progression. Neoplasia. 2012;14(7):572–84.

    Google Scholar 

  35. Yasuda H, Aritaka N, Ando J, et al. Chronic myelogenous leukemia with mild basophilia as the predominant manifestation at presentation. Intern Med. 2011;50:501–2.

    Article  PubMed  Google Scholar 

  36. Bain BJ, Heller M. Dysplastic basophils in the accelerated phase of chronic myelogenous leukemia. Am J Hematol. 2011;86:949.

    Article  PubMed  Google Scholar 

  37. Stacchini A, Demurtas A, Godio L. Flow cytometric detection of degranulated basophils in chronic myeloid leukemia in accelerated phase. Clin Cytom. 2011;80B:122–4.

    Article  Google Scholar 

  38. Wimazal F, Germing U, Kundi M, et al. Evaluation of the prognostic significance of eosinophilia and basophilia in a larger cohort of patients with myelodysplastic syndromes. Cancer. 2010;116:2372–81.

    PubMed  Google Scholar 

  39. Rudman SM, Josephs DH, Cambrook H, et al. Harnessing engineered antibodies of the IgE class to combat malignancy: initial assessment of FcєRI-mediated basophil activation by a tumour- specific IgE antibody to evaluate the risk of type I hypersensitivity. Clin Exp Allergy. 2011;41:1400–13.

    Article  CAS  PubMed  Google Scholar 

  40. A Study of CSL362 in Patients With CD123+ Acute Myeloid Leukemia Currently in Remission. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 –Available from: http://www.clinicaltrials.gov/ct2/show/NCT01632852?term=CD123&rank=1 NLM Identifer: NCT01632852. This proposed clinical trial is the first to target CD123, and may establish a future therapy for myeloid leukemia treatment.

  41. Meno KH. Allergen structures and epitopes. Allergy. 2011;66:19–21.

    Article  PubMed  Google Scholar 

  42. Saini SS, MacGlashan Jr DW. Assessing basophil functional measures during monoclonal anti-IgE therapy. J Immunol Methods. 2012;383:60–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Hida S, Tadachi M, Saito T, et al. Negative control of basophil expansion by IRF-2 critical for the regulation of Th1 / Th2 balance. Blood. 2005;106(6):2011–7.

    Article  CAS  PubMed  Google Scholar 

  44. Wakahara K, Baba N, Van VQ, et al. Human basophils interact with memory T cells to augment Th17 responses. Blood. 2012;120:4761–71.

    Article  CAS  PubMed  Google Scholar 

  45. Wada T, Ishiwata K, Koseki H, et al. Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J Clin Invest. 2010;120:2867–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Valent P, Schmidt G, Mayer P, et al. Interleukin-3 is a differentiation factor for human basophils. Blood. 1989;73(7):1763–9.

    CAS  PubMed  Google Scholar 

  47. Conti P, Kempuraj D, Di Gioaccino M, et al. Interleukin-6 and mast cells. Allergy Asthma Proc. 2002;23(5):331–5.

    CAS  PubMed  Google Scholar 

  48. Schneider E, Thieblemont N, De Moraes ML, Dy M. Basophils: new players in the cytokine network. Eur Cytokine Netw. 2010;21(3):142–53.

    CAS  PubMed  Google Scholar 

  49. Siracusa MC, Tait Wojno ED, Artis D. Functional heterogeneity in the basophil cell lineage. Adv Immunol. 2012;115:141–59. This article provides insight into potential heterogeneity in basophil development.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2010;125(2):S73–80.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Charles N, Dema B, Rivera J. Reply to: basophils from humans with systemic lupus erythematosus do not express MHC-II. Nat Med. 2012;18:489–90.

    Article  CAS  Google Scholar 

  52. Ford LS, Bloom KA, Nowak-Wegrzyn AH, et al. Basophil reactivity, wheal size, and immunoglobulin levels distinguish degrees of cow’s milk tolerance. J Allergy Clin Immunol. 2013;131:180–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. MacGlashan Jr D. Expression of CD203c and CD63 in human basophils: relationship to differential regulation of piecemeal and anaphylactic degranulation processes. Clin Exp Allergy. 2010;40:1365–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Crivellato E, Beatrice N, Ribatti D. The history of the controversial relationship between mast cells and basophils. Immunol Lett. 2011;141(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  55. Kleine-Tebbe J, Erdmann S, Knol EF, et al. Diagnostic tests based on human basophils: potentials, pitfalls and perspectives. Int Arch Allergy Immunol. 2006;141:79–90.

    Article  PubMed  Google Scholar 

  56. Bieneman AP, Chichester KL, Chen YH, Schroeder JT. Toll-like receptor 2 ligands activate human basophils for both IgE-dependent and IgE-independent secretion. J Allergy Clin Immunol. 2005;115:295–301.

    Article  CAS  PubMed  Google Scholar 

  57. Yamada T, Sun Q, Zeibecoglou K, et al. IL-3, IL-5, granulocyte-macrophage colony-stimulating factor receptor alpha-subunit, and common beta-subunit expression by peripheral leukocytes and blood dendritic cells. J Allergy Clin Immunol. 1998;101:677–82.

    Article  CAS  PubMed  Google Scholar 

  58. Uguccioni M, Mackay C, Ochensberger B, et al. High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. J Clin Invest. 1997;100:1137–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Siraganian RP, Hook WA. Mechanism of histamine release by formyl methionine-containing peptides. J Immunol. 1977;119:2078–83.

    CAS  PubMed  Google Scholar 

  60. Tedeschi A, Salmaso C, Di Donato M, et al. Granulocyte-macrophage colony-stimulating factor and interleukin-3 cause basophil histamine release by a common pathway: downregulation by sodium. Immunology. 1999;96:164–70.

    Article  CAS  PubMed  Google Scholar 

  61. Bischoff SC, Brunner T, De Weck AL, Dahinden C. Interleukin 5 modifies histamine release and leukotriene generation by human basophils in response to diverse agonists. J Exp Med. 1990;172:1577–82.

    Article  CAS  PubMed  Google Scholar 

  62. Jürgensen H, Braam U, Kownatzki E, et al. Human C5a induces a substantial histamine release in human basophils but not in tissue mast cells. Int Arch Allergy Appl Immunol. 1988;85(4):487–8.

    Article  PubMed  Google Scholar 

  63. Komiya A, Nagase H, Okugawa S, et al. Expression and function of toll-like receptors in human basophils. Allergy Immunol. 2006;140 suppl 1:23–7.

    Article  CAS  Google Scholar 

  64. Smithgall MD, Comeau MR, Yoon B, et al. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK Cells. Int Immunol. 2008;20(8):1019–30.

    Article  CAS  PubMed  Google Scholar 

  65. Watanabe T, Yamashita K, Sakurai T, et al. Toll-like receptor activation in basophils contributes to the development of IgG4-related disease. J Gastroenterol. 2012;48(2):247–53.

    Article  PubMed  Google Scholar 

  66. Mochizuki A, Mceuen AR, Buckley MG, et al. The release of basogranulin in response to IgE-dependent and IgE-independent stimuli: validity of basogranulin measurement as an indicator of basophil activation. J Allergy Clin Immunol. 1995;12(1):102–8.

    Google Scholar 

  67. Lantz CS, Min B, Tsai M, et al. IL-3 is required for increases in blood basophils in nematode infection in mice and can enhance IgE-dependent IL-4 production by basophils in vitro. Lab Investig. 2008;88:1134–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Takao K, Tanimoto Y, Fujii M, et al. In vitro expansion of human basophils by interleukin-3 from granulocyte colony-stimulating factor-mobilized peripheral blood stem cells. Clin Exp Allergy. 2003;33:1561–7.

    Article  CAS  PubMed  Google Scholar 

  69. Iikura M, Yamaguchi M, Fujisawa T, et al. Secretory IgA induces degranulation of IL-3-primed basophils. J Immunol. 1998;161:1510–5.

    CAS  PubMed  Google Scholar 

  70. Verweij MM, Sabato V, Nullens S, et al. STAT5 in human basophils: IL-3 is required for its FcεRI-mediated phosphorylation. Clin Cytom. 2012;82B:101–6.

    Article  CAS  Google Scholar 

  71. Pecaric-Petkovic T, Didichenko SA, Kaempfer S, et al. Human basophils and eosinophils are the direct target leukocytes of the novel IL-1 family member IL-33. Blood. 2009;113:1526–34.

    Article  CAS  PubMed  Google Scholar 

  72. Cady CT, Powell MS, Harbeck RJ, et al. IgG antibodies produced during subcutaneous allergen immunotherapy mediate inhibition of basophil activation via a mechanism involving both FcγRIIA and FcγRIIB. Immunol Lett. 2010;130:57–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Patella V, Florio G, Petraroli, Marone G. HIV-1 gp120 induces IL-4 and IL-13 release from human Fc epsilon RI+ cells through interaction with the VH3 region of IgE. J Immunol. 2000;164:589–95.

    CAS  PubMed  Google Scholar 

  74. Chen K, Cerutti A. The function and regulation of immunoglobulin D. Curr Opin Immunol. 2011;23(3):345–52.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Kroeger KM, Sullivan BM, Locksley RM. IL-18 and IL-33 elicit Th2 cytokines from basophils via a MyD88- and p38alpha-dependent pathway. J Leuko Biol. 2009;86:769–78.

    Article  CAS  PubMed  Google Scholar 

  76. Seok J, Shaw Warren H, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. PNAS. 2013;110:3507–12. Evidence was presented that the current mouse model for inflammatory diseases may not be appropriate for translation to understanding human disease.

    Article  CAS  PubMed  Google Scholar 

  77. Suzukawa M, Hirai K, Iikura M, et al. IgE- and FcєRI-mediated migration of human basophils. Int Immunol. 2005;17:1249–55.

    Article  CAS  PubMed  Google Scholar 

  78. Bochner BS, McKelvey AA, Sterbinsky SA, et al. IL-3 augments adhesiveness for endothelium and CD11b expression in human basophils but not neutrophils. J Immunol. 1990;145(6):1832–7.

    CAS  PubMed  Google Scholar 

  79. Iikura M, Ebisawa M, Yamaguchi M, et al. Transendothelial migration of human basophils. J Immunol. 2004;173:5189–95.

    CAS  PubMed  Google Scholar 

  80. Lie WJ, Homburg E, Kuijers TW, et al. Regulation and kinetics of platelet-activating factor and leukotriene C4 synthesis by activated human basophils. Clin Exp Allergy. 2003;33:1125–34.

    Article  CAS  PubMed  Google Scholar 

  81. Tsujimura Y, Obata K, Mukai K, et al. Basophils play a pivotal role in immunoglobulin-G-mediated but not immunoglobulin-E-mediated systemic anaphylaxis. Immunity. 2008;2:581–9.

    Article  Google Scholar 

  82. Steiner M, Harrer A, Lang R, et al. Basophil activation test for investigation of IgE-mediated mechanisms in drug hypersensitivity. J Visualized Exp. 2011;55:1–6.

    Google Scholar 

  83. Chirumbolo S. Basophil activation test to optimize the diagnosis of adverse effects following immunization to vaccines. Iran J Asthma Immunol. 2013;12:196–202.

    CAS  Google Scholar 

  84. Macglashan Jr DW. Basophil activation testing. J Allergy Immunol. 2013;132(4):777–87. This review discusses the potential of BAT to assess functional changes in basophils.

    Article  CAS  Google Scholar 

  85. De Weck AL, Sanz ML, Gamboa PM, et al. Diagnostic tests based on human basophils: more potentials and perspectives than pitfalls. Int Allergy Immunol. 2008;146:177–89.

    Article  Google Scholar 

  86. Khan FM, Ueno-Yamanouchi A, Serushago B, et al. Basophil activation test compared to skin prick test and fluorescence enzyme immunoassay for aeroallergen-specific Immunoglobulin-E. Allergy Clin Immunol. 2012;8:1–13.

    Google Scholar 

  87. Savage JH, Courneya JP, Sterba PM, et al. Kinetics of mast cell, basophil, and oral food challenge responses in omalizumab-treated adults with peanut allergy. J Allergy Clin Immunol. 2012;130:1123–9. Provided here is the application of omalizumab and its effects in modulating immune response to allergy challenge.

    Article  CAS  PubMed  Google Scholar 

  88. Blank S. Components and mechanisms in diagnosis and therapy of hymenoptera venom allergy. University Dissertation - Hamburg. 2009;1–70.

  89. Konstantinou GN, Asero R, Ferrer M, et al. EAACI taskforce position paper: evidence for autoimmune urticaria and proposal for defining diagnostic criteria. Allergy. 2013;68:27–36. Urticaria as an autoimmune disorder involving basophils is discussed.

    Article  CAS  PubMed  Google Scholar 

  90. Gentinetta T, Pecaric-Petkovic T, Wan D, et al. Individual IL-3 priming is crucial for consistent in vitro activation of donor basophils in patients with chronic urticaria. J Allergy Clin Immunol. 2011;128:1227–34.

    Article  CAS  PubMed  Google Scholar 

  91. Imoto Y, Tokunaga T, Matsumoto Y, et al. Cystatin SN upregulation in patients with seasonal allergic rhinitis. PLOS One. 2013;8(8):1–8.

    Article  Google Scholar 

  92. Zeiger S, Heller S. Development of nasal basophilic cells and nasal eosinophils from age 4 months through 4 years in children of atopic parents. J Allergy Clin Immunol. 1993;91(3):723–34.

    Article  CAS  PubMed  Google Scholar 

  93. Kepley CL, McFeeley PJ, Oliver JM, Lipscomb MF. Immunohistochemical detection of human basophils in postmortem cases of fatal asthma. Am J Resp Crit Care Med. 2011;164:1053–8.

    Article  Google Scholar 

  94. Siracusa MC, Kim BS, Spergel JM, Artis D. Basophils and allergic inflammation. J Allergy Clin Immunol. 2013;132:789–801. This review encapsulates many functions of basophils in allergy but is skewed to mouse biology.

    Article  CAS  PubMed  Google Scholar 

  95. Botturi K, Langelot M, Lair D, et al. Preventing asthma exacerbations: what are the targets? Pharmacol Ther. 2011;131(1):114–29.

    Article  CAS  PubMed  Google Scholar 

  96. Shelley WB, Resnik SS. Basophil degranulation induced by oral poison ivy antigen. Arch Dermatol. 1965;92:147–50.

    Article  Google Scholar 

  97. Brandt EB, Sivaprasad U. Th2 cytokines and atopic dermatitis. J Clin Cell Immunol. 2011;2(3):1–25.

    Article  Google Scholar 

  98. Sabroe I, Jones EC, Usher LR, et al. Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: a critical role for monocytes in leukocyte lipopolysaccharide responses. J Immunol. 2002;168:4701–10.

    CAS  PubMed  Google Scholar 

  99. Wong S, McLaughlin J, Cheng D, et al. IL-3 receptor signaling is dispensable for BCR-ABL-induced myeloproliferative disease. Proc Natl Acad Sci U S A. 2003;100(20):11630–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Noti M, Tait Wojno ED, Kim BS, et al. Thymic stromal lymphopoietin-elicited basophil responses promote eosinophilic esophagitis. Nat Med. 2013;19:1005–13.

    Article  CAS  PubMed  Google Scholar 

  101. Roan F, Bell BD, Stoklasek TA, et al. The multiple facets of thymic thromal lymphopoietin (TSLP) during allergic inflammation and beyond. J Leukoc Biol. 2012;91(6):1–10.

    Google Scholar 

  102. Bogiatzi SI, Guillot-Delost M, Cappuccio A, et al. Multiple-checkpoint inhibition of thymic stromal lymphopoietin – induced TH2 response by TH17-related cytokines. J Allergy Clin Immunol. 2012;1:233–40.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by National Institutes of Health grant AI97372.

Compliance with Ethics Guidelines

Conflict of Interest

Jessica L. Cromheecke, Kathleen T. Nguyen, and David P. Huston declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. With regard to the authors’ research cited in this paper, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Huston.

Additional information

This article is part of the Topical Collection on Immune Deficiency and Dysregulation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cromheecke, J.L., Nguyen, K.T. & Huston, D.P. Emerging Role of Human Basophil Biology in Health and Disease. Curr Allergy Asthma Rep 14, 408 (2014). https://doi.org/10.1007/s11882-013-0408-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-013-0408-2

Keywords

Navigation