Skip to main content
Log in

Allergen structures and biologic functions: The cutting edge of allergy research

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Studies of structure and function of allergens using state-of-the-art technologies have led to a better understanding of allergenicity, including aspects related to cross-reactivity, allergen nomenclature, and the identification of antigenic determinants. This information is being applied to the design and production of allergy vaccines, some of which already have proven efficacy and safety in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Jenkins JA, Breiteneder H, Mills EN: Evolutionary distance from human homologs reflects allergenicity of animal food proteins. J Allergy Clin Immunol 2007, 120:1399–1405.

    Article  PubMed  CAS  Google Scholar 

  2. Radauer C, Breiteneder H: Pollen allergens are restricted to few protein families and show distinct patterns of species distribution. J Allergy Clin Immunol 2006, 117:141–147.

    Article  PubMed  CAS  Google Scholar 

  3. Chapman MD, Pomés A, Breiteneder H, et al.: Nomenclature and structural biology of allergens. J Allergy Clin Immunol 2007, 119:414–420.

    Article  PubMed  CAS  Google Scholar 

  4. Radauer C, Breiteneder H: Evolutionary biology of plant food allergens. J Allergy Clin Immunol 2007, 120:518–525.

    Article  PubMed  CAS  Google Scholar 

  5. Verdino P: Structural characterization of pollen allergens. Clin Rev Allergy Immunol 2006, 30:73–95.

    Article  PubMed  CAS  Google Scholar 

  6. Wünschmann S, Gustchina A, Chapman MD, et al.: Cockroach allergen Bla g 2: an unusual aspartic proteinase. J Allergy Clin Immunol 2005, 116:140–145.

    Article  PubMed  Google Scholar 

  7. Gustchina A, Li M, Wünschmann S, et al.: Crystal structure of cockroach allergen Bla g 2, an unusual zinc binding aspartic protease with a novel mode of self-inhibition. J Mol Biol 2005, 348:433–444.

    Article  PubMed  CAS  Google Scholar 

  8. Takai T, Kato T, Yasueda H, et al.: Analysis of the structure and allergenicity of recombinant pro-and mature Der p 1 and Der f 1: major conformational IgE epitopes blocked by prodomains. J Allergy Clin Immunol 2005, 115:555–563.

    Article  PubMed  CAS  Google Scholar 

  9. Meno K, Thorsted PB, Ipsen H, et al.: The crystal structure of recombinant proDer p 1, a major house dust mite proteolytic allergen. J Immunol 2005, 175:3835–3845.

    PubMed  CAS  Google Scholar 

  10. de Halleux S, Stura E, VanderElst L, et al.: Three-dimensional structure and IgE-binding properties of mature fully active Der p 1, a clinically relevant major allergen. J Allergy Clin Immunol 2006, 117:571–576.

    Article  PubMed  Google Scholar 

  11. Derewenda U, Li J, Derewenda Z, et al.: The crystal structure of a major dust mite allergen Der p 2, and its biological implications. J Mol Biol 2002, 318:189–197.

    Article  PubMed  CAS  Google Scholar 

  12. Yennawar NH, Li LC, Dudzinski DM, et al.: Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci U S A 2006, 103:14664–14671.

    Article  PubMed  CAS  Google Scholar 

  13. Kaiser L, Gronlund H, Sandalova T, et al.: The crystal structure of the major cat allergen Fel d 1, a member of the secretoglobin family. J Biol Chem 2003, 278:37730–37735.

    Article  PubMed  CAS  Google Scholar 

  14. Kaiser L, Velickovic TC, Badia-Martinez D, et al.: Structural characterization of the tetrameric form of the major cat allergen Fel d 1. J Mol Biol 2007, 370:714–727.

    Article  PubMed  CAS  Google Scholar 

  15. Hindley J, Wünschmann S, Satinover SM, et al.: Bla g 6: a troponin C allergen from Blattella germanica with IgE binding calcium dependence. J Allergy Clin Immunol 2006, 117:1389–1395.

    Article  PubMed  CAS  Google Scholar 

  16. Bocskei Z, Groom CR, Flower DR, et al.: Pheromone binding to two rodent urinary proteins revealed by X-ray crystallography. Nature 1992, 360:186–188.

    Article  PubMed  CAS  Google Scholar 

  17. Salcedo G, Sánchez-Monge R, Barber D, et al.: Plant nonspecific lipid transfer proteins: an interface between plant defence and human allergy. Biochim Biophys Acta 2007, 1771:781–791.

    PubMed  CAS  Google Scholar 

  18. Mogensen JE, Ferreras M, Wimmer R, et al.: The major allergen from birch tree pollen, Bet v 1, binds and permeabilizes membranes. Biochemistry 2007, 46:3356–3365.

    Article  PubMed  CAS  Google Scholar 

  19. Keber MM, Gradisar H, Jerala R: MD-2 and Der p 2—a tale of two cousins or distant relatives? J Endotoxin Res 2005, 11:186–192.

    PubMed  CAS  Google Scholar 

  20. Fan Y, Gore JC, Redding KO, et al.: Tissue localization and regulation by juvenile hormone of human allergen Bla g 4 from the German cockroach, Blattella germanica (L.). Insect Mol Biol 2005, 14:45–53.

    Article  PubMed  CAS  Google Scholar 

  21. Barral P, Suarez C, Batanero E, et al.: An olive pollen protein with allergenic activity, Ole e 10, defines a novel family of carbohydrate-binding modules and is potentially implicated in pollen germination. Biochem J 2005, 390:77–84.

    Article  PubMed  CAS  Google Scholar 

  22. Aalberse RC: Structural features of allergenic molecules. Chem Immunol Allergy 2006, 91:134–146.

    Article  PubMed  CAS  Google Scholar 

  23. Emanuelsson C, Spangfort MD: Allergens as eukaryotic proteins lacking bacterial homologues. Mol Immunol 2007, 44:3256–3260.

    Article  PubMed  CAS  Google Scholar 

  24. Salcedo G, Sánchez-Monge R, Díaz-Perales A, et al.: Plant non-specific lipid transfer proteins as food and pollen allergens. Clin Exp Allergy 2004, 34:1336–1341.

    Article  PubMed  CAS  Google Scholar 

  25. Moreno FJ, Mellon FA, Wickham MS, et al.: Stability of the major allergen Brazil nut 2S albumin (Ber e 1) to physiologically relevant in vitro gastrointestinal digestion. FEBS J 2005, 272:341–352.

    Article  PubMed  CAS  Google Scholar 

  26. Lehmann K, Schweimer K, Reese G, et al.: Structure and stability of 2S albumin-type peanut allergens: implications for the severity of peanut allergic reactions. Biochem J 2006, 395:463–472.

    Article  PubMed  CAS  Google Scholar 

  27. Scheurer S, Lauer I, Foetisch K, et al.: Strong allergenicity of Pru av 3, the lipid transfer protein from cherry, is related to high stability against thermal processing and digestion. J Allergy Clin Immunol 2004, 114:900–907.

    Article  PubMed  CAS  Google Scholar 

  28. Chapman MD, Wunschmann S, Pomés A: Proteases as Th2 adjuvants. Curr Allergy Asthma Rep 2007, 7:363–367.

    Article  PubMed  CAS  Google Scholar 

  29. Kikuchi Y, Takai T, Kuhara T, et al.: Crucial commitment of proteolytic activity of a purified recombinant major house dust mite allergen Der p1 to sensitization toward IgE and IgG responses. J Immunol 2006, 177:1609–1617.

    PubMed  CAS  Google Scholar 

  30. Schein CH, Ivanciuc O, Braun W: Bioinformatics approaches to classifying allergens and predicting cross-reactivity. Immunol Allergy Clin North Am 2007, 27:1–27.

    Article  PubMed  Google Scholar 

  31. Aalberse RC: Assessment of allergen cross-reactivity. Clin Mol Allergy 2007, 5:2–7.

    Article  PubMed  Google Scholar 

  32. Verdino P, Barderas R, Villalba M, et al.: Three-dimensional structure of the cross-reactive pollen allergen Che a 3: visualizing cross-reactivity on the molecular surfaces of weed, grass, and tree pollen allergens. J Immunol 2008, 180:2313–2321.

    PubMed  CAS  Google Scholar 

  33. Foetisch K, Westphal S, Lauer I, et al.: Biological activity of IgE specific for cross-reactive carbohydrate determinants. J Allergy Clin Immunol 2003, 111:889–896.

    Article  PubMed  CAS  Google Scholar 

  34. Arif SA, Hamilton RG, Yusof F, et al.: Isolation and characterization of the early nodule-specific protein homologue (Hev b 13), an allergenic lipolytic esterase from Hevea brasiliensis latex. J Biol Chem 2004, 279:23933–23941.

    Article  PubMed  CAS  Google Scholar 

  35. Petersen A, Suck R, Lindner B, et al.: Phl p 3: structural and immunological characterization of a major allergen of timothy grass pollen. Clin Exp Allergy 2006, 36:840–849.

    Article  PubMed  CAS  Google Scholar 

  36. Gao YF, Wang DY, Ong TC, et al.: Identification and characterization of a novel allergen from Blomia tropicalis: Blo t 21. J Allergy Clin Immunol 2007, 120:105–112.

    Article  PubMed  CAS  Google Scholar 

  37. Mirza O, Henriksen A, Ipsen H, et al.: Dominant epitopes and allergic cross-reactivity: complex formation between a Fab fragment of a monoclonal murine IgG antibody and the major allergen from birch pollen Bet v 1. J Immunol 2000, 165:331–338.

    PubMed  CAS  Google Scholar 

  38. Padavattan S, Schirmer T, Schmidt M, et al.: Identification of a B-cell epitope of hyaluronidase, a major bee venom allergen, from its crystal structure in complex with a specific Fab. J Mol Biol 2007, 368:742–752.

    Article  PubMed  CAS  Google Scholar 

  39. Li M, Gustchina A, Alexandratos J, et al.: Crystal structure of a dimerized cockroach allergen Bla g 2 complexed with a monoclonal antibody. J Biol Chem 2008 Jun 2 (Epub ahead of print).

  40. Niemi M, Jylha S, Laukkanen ML, et al.: Molecular interactions between a recombinant IgE antibody and the beta-lactoglobulin allergen. Structure 2007, 15:1413–1421.

    Article  PubMed  CAS  Google Scholar 

  41. Ichikawa S, Takai T, Inoue T, et al.: NMR study on the major mite allergen Der f 2: its refined tertiary structure, epitopes for monoclonal antibodies and characteristics shared by ML protein group members. J Biochem (Tokyo) 2005, 137:255–263.

    CAS  Google Scholar 

  42. Naik MT, Chang CF, Kuo IC, et al.: Roles of structure and structural dynamics in the antibody recognition of the allergen proteins: an NMR study on Blomia tropicalis major allergen. Structure 2008, 16:125–136.

    Article  PubMed  CAS  Google Scholar 

  43. Davies JM, O’Hehir RE, Suphioglu C: Use of phage display technology to investigate allergen-antibody interactions. J Allergy Clin Immunol 2000, 105:1085–1092.

    Article  PubMed  CAS  Google Scholar 

  44. Flicker S, Steinberger P, Ball T, et al.: Spatial clustering of the IgE epitopes on the major timothy grass pollen allergen Phl p 1: importance for allergenic activity. J Allergy Clin Immunol 2006, 117:1336–1343.

    Article  PubMed  CAS  Google Scholar 

  45. van Boxtel EL, van Beers MM, Koppelman SJ, et al.: Allergen Ara h 1 occurs in peanuts as a large oligomer rather than as a trimer. J Agric Food Chem 2006, 54:7180–7186.

    Article  PubMed  Google Scholar 

  46. Linhart B, Valenta R: Molecular design of allergy vaccines. Curr Opin Immunol 2005, 17:646–655.

    Article  PubMed  CAS  Google Scholar 

  47. Gafvelin G, Parmley S, Neimert-Andersson T, et al.: Hypoallergens for allergen-specific immunotherapy by directed molecular evolution of mite group 2 allergens. J Biol Chem 2007, 282:3778–3787.

    Article  PubMed  CAS  Google Scholar 

  48. Reese G, Ballmer-Weber BK, Wangorsch A, et al.: Allergenicity and antigenicity of wild-type and mutant, monomeric, and dimeric carrot major allergen Dau c 1: destruction of conformation, not oligomerization, is the roadmap to save allergen vaccines. J Allergy Clin Immunol 2007, 119:944–951.

    Article  PubMed  CAS  Google Scholar 

  49. Jutel M, Jaeger L, Suck R, et al.: Allergen-specific immunotherapy with recombinant grass pollen allergens. J Allergy Clin Immunol 2005, 116:608–613.

    Article  PubMed  CAS  Google Scholar 

  50. Niederberger V, Horak F, Vrtala S, et al.: Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc Natl Acad Sci U S A 2004, 101(Suppl 2) 14677–14682.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Pomés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pomés, A. Allergen structures and biologic functions: The cutting edge of allergy research. Curr Allergy Asthma Rep 8, 425–432 (2008). https://doi.org/10.1007/s11882-008-0082-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-008-0082-y

Keywords

Navigation