Skip to main content

Advertisement

Log in

WHIM syndrome: A defect in CXCR4 signaling

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

The study of inherited immunodeficiencies has proven valuable in elucidating molecular signaling cascades underlying the developmental and functional regulation of the human immune system. The first example of a human immunologic disease caused by mutation of a chemokine receptor was provided by WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome, a rare, combined immunodeficiency featuring an unusual form of neutropenia. Subsequent studies following the initial description of mutations in the CXCR4 gene have revealed a striking concordance in the types of mutations observed, suggesting that impaired regulation of receptor signaling by truncation of the cytoplasmic tail domain is an essential aspect in disease pathogenesis. Biochemical studies have provided support for the model that impaired receptor downregulation leads to the characteristic immunologic and hematologic disturbances. Interestingly, these genetic studies have also identified phenocopies with the same clinical features but without mutation of CXCR4, suggesting that mutations in as yet uncharacterized downstream regulators of the receptor may be involved in a proportion of cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Deng H, Liu R, Ellmeier W, et al.: Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996, 381:661–666.

    Article  PubMed  CAS  Google Scholar 

  2. Feng Y, Broder CC, Kennedy PE, Berger EA: HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996, 272:872–877.

    Article  PubMed  CAS  Google Scholar 

  3. Dean M, Carrington M, Winkler C, et al.: Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 1996, 273:1856–1862.

    Article  PubMed  CAS  Google Scholar 

  4. Samson M, Libert F, Doranz BJ, et al.: Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996, 382:722–725.

    Article  PubMed  CAS  Google Scholar 

  5. Gerard C, Rollins BJ: Chemokines and disease. Nat Immunol 2001, 2:108–115.

    Article  PubMed  CAS  Google Scholar 

  6. Wetzler M, Talpaz M, Kleinerman ES, et al.: A new familial immunodeficiency disorder characterized by severe neutropenia, a defective marrow release mechanism, and hypogammaglobulinemia. Am J Med 1990, 89:663–672.

    Article  PubMed  CAS  Google Scholar 

  7. Hord JD, Whitlock JA, Gay JC, Lukens JN: Clinical features of myelokathexis and treatment with hematopoietic cytokines: a case report of two patients and review of the literature. J Pediatr Hematol Oncol 1997, 19:443–448.

    Article  PubMed  CAS  Google Scholar 

  8. Wetzler M, Talpaz M, Kellagher MJ, et al.: Normalization of neutrophil counts and morphology by GM-CSF. JAMA 1992, 267:2179–2180.

    Article  PubMed  CAS  Google Scholar 

  9. Orth G, Jablonska S, Jarzabek-Chorzelska M, et al.: Characteristics of the lesions and risk of malignant conversion associated with the type of human papillomavirus involved in epidermodysplasia verruciformis. Cancer Res 1979, 39:1074–1082.

    PubMed  CAS  Google Scholar 

  10. Gorlin RJ, Gelb B, Diaz GA, et al.: WHIM syndrome, an autosomal dominant disorder: clinical, hematological, and molecular studies. Am J Med Genet 2000, 91:368–376.

    Article  PubMed  CAS  Google Scholar 

  11. Goddard EA, Hughes EJ, Beatty DW: A case of immunodeficiency characterized by neutropenia, hypogammaglobulinaemia, recurrent infections and warts. Clin Lab Haematol 1994, 16:297–302.

    Article  PubMed  CAS  Google Scholar 

  12. Balabanian K, Lagane B, Pablos JL, et al.: WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 2005, 105:2449–2457. This study confirms the genetic heterogeneity of WHIM syndrome and points out the inappropriate responsiveness of CXCR4 to SDF-1 as a central pathogenic mechanism for both myelokathexis and hypogammaglobulinemia.

    Article  PubMed  CAS  Google Scholar 

  13. Plebani A, Cantu-Rajnoldi A, Collo G, et al.: Myelokathexis associated with multiple congenital malformations: immunological study on phagocytic cells and lymphocytes. Eur J Haematol 1988, 40:12–17.

    Article  PubMed  CAS  Google Scholar 

  14. Taniuchi S, Yamamoto A, Fujiwara T, et al.: Dizygotic twin sisters with myelokathexis: mechanism of its neutropenia. Am J Hematol 1999, 62:106–111.

    Article  PubMed  CAS  Google Scholar 

  15. Gulino AV, Moratto D, Sozzani S, et al.: Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome.Blood 2004:444–452. In this study, the authors provide the first evidence of increased chemotaxis toward SDF-1 of both neutrophils and lymphocytes from WHIM patients and present a detailed characterization by immunophenotyping of peripheral blood lymphocytes.

  16. Zuelzer WW: “Myelokathexis”—a new form of chronic granulocytopenia: report of a case. N Engl J Med 1964, 270:699–704.

    Article  PubMed  CAS  Google Scholar 

  17. Mentzer WC Jr, Johnston RB Jr, Baehner RL, Nathan DG: An unusual form of chronic neutropenia in a father and daughter with hypogammaglobulinaemia. Br J Haematol 1977, 36:313–322.

    PubMed  Google Scholar 

  18. Cernelc P, Andoljsek D, Mlakar U, et al.: Effects of molgramostim, filgrastim and lenograstim in the treatment of myelokathexis. Pflugers Arch 2000, 440:R81–82.

    Article  PubMed  CAS  Google Scholar 

  19. Arai J, Wakiguchi H, Hisakawa H, et al.: A variant of myelokathexis with hypogammaglobulinemia: lymphocytes as well as neutrophils may reverse in response to infections. Pediatr Hematol Oncol 2000, 17:171–176.

    Article  PubMed  CAS  Google Scholar 

  20. Hess U, Ganser A, Schnurch HG, et al.: Myelokathexis treated with recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF). Br J Haematol 1992, 80:254–256.

    PubMed  CAS  Google Scholar 

  21. O’Regan S, Newman AJ, Graham RC: “Myelokathexis.” Neutropenia with marrow hyperplasia. Am J Dis Child 1977, 131:655–658.

    PubMed  CAS  Google Scholar 

  22. Ganser A, Ottmann OG, Erdmann H, et al.: The effect of recombinant human granulocyte-macrophage colonystimulating factor on neutropenia and related morbidity in chronic severe neutropenia. Ann Intern Med 1989, 111:887–892.

    PubMed  CAS  Google Scholar 

  23. Aprikyan AA, Liles WC, Park JR, et al.: Myelokathexis, a congenital disorder of severe neutropenia characterized by accelerated apoptosis and defective expression of bcl-x in neutrophil precursors. Blood 2000, 95:320–327.

    PubMed  CAS  Google Scholar 

  24. Bohinjec J, Andoljsek D: Neutrophil-releasing activity of recombinant human granulocyte-macrophage colony stimulating factor in myelokathexis. Br J Haematol 1992, 82:169–170.

    PubMed  CAS  Google Scholar 

  25. Weston B, Axtell RA, Todd RF, et al.: Clinical and biologic effects of granulocyte colony stimulating factor in the treatment of myelokathexis. J Pediatr 1991, 118:229–234.

    Article  PubMed  CAS  Google Scholar 

  26. Petit I, Szyper-Kravitz M, Nagler A, et al.: G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002, 3:687–694. This and Valenzuela-Fernandez et al. [27••] revealed the central role of CXCR4-SDF-1 in the mobilization of precursor and mature myeloid cells from bone marrow induced by G-CSF. They identify the proteolytic cleavage of SDF1 as a crucial step in the process of leukocyte release from bone marrow.

    Article  PubMed  CAS  Google Scholar 

  27. Valenzuela-Fernandez A, Planchenault T, Baleux F, et al.: Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem 2002, 277:15677–15689. See Petit et al. [26••].

    Article  PubMed  CAS  Google Scholar 

  28. Imashuku S, Miyagawa A, Chiyonobu T, et al.: Epstein-Barr virus-associated T-lymphoproliferative disease with hemophagocytic syndrome, followed by fatal intestinal B lymphoma in a young adult female with WHIM syndrome. Ann Hematol 2002, 81:470–473. This and the clinical report by Chae et al. [29••] seem to suggest an increased risk for EBV-related morbidity in WHIM patients.

    Article  PubMed  CAS  Google Scholar 

  29. Chae KM, Ertle JO, Tharp MD: B-cell lymphoma in a patient with WHIM syndrome. J Am Acad Dermatol 2001, 44:124–128. See Imashuku et al. [28••].

    Article  PubMed  CAS  Google Scholar 

  30. Hernandez PA, Gorlin RJ, Lukens JN, et al.: Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 2003, 34:70–74. A single pedigree with six affected individuals allowed the authors to map the disease locus to chromosome 2q21 and identify truncating mutations in the chemokine receptor gene CXCR4.

    Article  PubMed  CAS  Google Scholar 

  31. Bohinjec J: Myelokathexis: chronic neutropenia with hyperplastic bone marrow and hypersegmented neutrophils in two siblings. Blut 1981, 42:191–196.

    Article  PubMed  CAS  Google Scholar 

  32. Orsini MJ, Parent JL, Mundell SJ, et al.: Trafficking of the HIV coreceptor CXCR4: role of arrestins and identification of residues in the c-terminal tail that mediate receptor internalization. J Biol Chem 1999, 274:31076–31086.

    Article  PubMed  CAS  Google Scholar 

  33. Haribabu B, Richardson RM, Fisher I, et al.: Regulation of human chemokine receptors CXCR4: role of phosphorylation in desensitization and internalization. J Biol Chem 1997, 272:28726–28731.

    Article  PubMed  CAS  Google Scholar 

  34. Signoret N, Oldridge J, Pelchen-Matthews A, et al.: Phorbol esters and SDF-1 induce rapid endocytosis and down modulation of the chemokine receptor CXCR4. J Cell Biol 1997, 139:651–664.

    Article  PubMed  CAS  Google Scholar 

  35. Ma Q, Jones D, Borghesani PR, et al.: Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A 1998, 95:9448–9453.

    Article  PubMed  CAS  Google Scholar 

  36. Zou YR, Kottmann AH, Kuroda M, et al.: Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998, 393:595–599.

    Article  PubMed  CAS  Google Scholar 

  37. Nagasawa T, Hirota S, Tachibana K, et al.: Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996, 382:635–638.

    Article  PubMed  CAS  Google Scholar 

  38. Suratt BT, Petty JM, Young SK, et al.: The role of the CXCR4/ SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood 2004, 104:565–571. This paper and Martin et al. [40••] provide clear evidence of the cross regulation of CXCR4 and CXCR2 in myeloid cells. The concerted action of these chemokine receptors guides neutrophil trafficking between bone marrow and peripheral blood.

    Article  PubMed  CAS  Google Scholar 

  39. Ma Q, Jones D, Springer TA: The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 1999, 10:463–471.

    Article  PubMed  CAS  Google Scholar 

  40. Martin C, Burdon PC, Bridger G, et al.: Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 2003, 19:583–593. See Suratt et al. [38••].

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz, G.A., Gulino, A.V. WHIM syndrome: A defect in CXCR4 signaling. Curr Allergy Asthma Rep 5, 350–355 (2005). https://doi.org/10.1007/s11882-005-0005-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-005-0005-0

Keywords

Navigation