Skip to main content

Advertisement

Log in

The Genetics of Hypogammaglobulinemia

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Etiologies for human hypogammaglobulinemias are diverse and include genetic and nongenetic causes. Although recent reviews focus on the complex genetics of common variable immunodeficiency, in this review, we survey different causes of hypogammaglobulinemias and discuss possible mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Nahm MH, Scott MG, Shackleford PG: Expression of human IgG subclasses. Ann Clin Lab Sci 1987, 17:183–196.

    PubMed  CAS  Google Scholar 

  2. Rijkers GT, Sanders LAM, Zegers BJM: Anti-capsular polysaccharide antibody deficiency states. Immunodeficiency 1993, 5:1–21.

    PubMed  CAS  Google Scholar 

  3. Kruetzmann S, Rosado MM, Weber H, et al.: Human immunoglobulin M memory B cells controlling infections are generated in the spleen. J Exp Med 2003, 197:939–945. This paper explores conditions under which antipolysaccharide antibodies are not adequately generated. The roles of the spleen and IgM memory B cells in generating these antibodies are evaluated.

    Article  PubMed  CAS  Google Scholar 

  4. Conley ME: Genetics of primary immunodeficiency diseases. Rev Immunogenet 2000, 2:231–242.

    PubMed  CAS  Google Scholar 

  5. International Union of Immunological Societies (IUIS): Primary immunodeficiency diseases: report of an IUIS Scientific Committee. Clin Exp Immunol 1999, 118 (Suppl1):1–28.

    Google Scholar 

  6. Schauer U, Stemberg F, Rieger CHL, et al.: IgG subclass concentrations in certified reference matieral 470 and reference values for children and adults determined wit the binding site reagents. Clin Chem 2003a, 49:1925–1929

    Article  CAS  Google Scholar 

  7. Lorber A, Simon T, Leeb J, et al.: Chrysotherapy: suppression of immunoglobulin synthesis. Arthritis Rheum 1978, 21:785–791.

    Article  PubMed  CAS  Google Scholar 

  8. Snowden N, Dietsch DM, Teh LS, et al.: Antibody deficiency associated with gold treatment: natural history and management in 22 patients. Ann Rheum Dis 1996, 55:616–621.

    PubMed  CAS  Google Scholar 

  9. Hanson L, Björkander J, Robbins JB, et al.: IgG subclass deficiencies. Vox Sang 1986, 51(Suppl2):50–56.

    Article  PubMed  Google Scholar 

  10. Buckley RH: Immunoglobulin G subclass deficiency: fact or fancy. Curr Allergy Asthma Rep 2002, 2:356–360. This paper is a recent review of the subject.

    Article  PubMed  Google Scholar 

  11. Pan Q, Hammarström L: Molecular basis of IgG subclass deficiency. Immunol Rev 2000, 178:99–110.

    Article  PubMed  CAS  Google Scholar 

  12. Lefranc M-P, Hammarström L, Smith CIE, Lefranc G: Gene deletions in the immunoglobulin heavy chain constant region locus: molecular and immunological analysis. Immunodefic Rev 1991, 2:265–281.

    PubMed  CAS  Google Scholar 

  13. Hammarström L, Carbonara AO, DeMarchi M, et al.:Generation of the antibody repertoire in individuals with multiple immunoglobulin heavy chain constant region gene deletions. Scand J Immunol 1987, 25:189–194.

    Article  PubMed  Google Scholar 

  14. Lefranc M-P, Lefranc G, Rabbitts TH: Inherited deletion of immunoglobulin heavy chain constant region genes in normal human individuals. Nature 1982, 300:760–762.

    Article  PubMed  CAS  Google Scholar 

  15. Schauer U, Stemberg F, Rieger CHL, et al.: Levels of antibodies specific to tetanus toxoid, Haemophilus influenzae type B, and pneumococcal capsular polysaccharide in healthy children and adults. Clin Diagn Lab Immunol 2003b, 10:202–207.

    Article  PubMed  CAS  Google Scholar 

  16. Sorensen RU, Leiva LE, Javier FC, et al.: Influence of age on the response to Streptococcus pneumoniae vaccine in patients with recurrent infections and normal immunoglobulin concentrations. J Allergy Clin Immunol 1998a, 102:215–221.

    Article  PubMed  CAS  Google Scholar 

  17. Hidalgo H, Mooer C, Leiva LE, Sorensen RU: Preimmunisation and postimmunisation pneumococcal antibody titers in children with recurrent infections. Ann Allergy Asthma Immunol 1996, 76:341–346.

    Article  PubMed  CAS  Google Scholar 

  18. Sorensen RU, Leiva LE, Giangrosso PA, et al.: Response to heptavalent conjugate Streptococcus pneumoniae vaccine in children with recurrent infections who are unresponsive to the polysaccharide vaccine. Pediatr Infect Dis 1998, 17:685–691.

    Article  CAS  Google Scholar 

  19. Dalal I, Reid B, Nisbet-Brown E, Roifman CM: The outcome of patients with hypogamma-globulinemia in infancy and early childhood. J Pediatr 1998, 133:144–146.

    Article  PubMed  CAS  Google Scholar 

  20. Dressler F, Peter HH, Müller W, Rieger CHL: Transient hypogammaglobulinemia of infancy. Acta Paediatr Scand 1989, 78:767–774.

    PubMed  CAS  Google Scholar 

  21. Stiehm ER: Transient hypogammaglobulinemia of infancy. In Immunologic Disorders in Infants and Children, edn 4. Philadelphia: W.B. Saunders; 1996:284-285.

  22. Chapel H, Geha R, Rosen FS, for the IUIS PID Classification Committee: Primary imunodeficiency disease: an update. Clin Exp Immunol 2003, 132:9–15. This paper is a recent review that includes updated information on CVID.

    Article  PubMed  CAS  Google Scholar 

  23. Pfluger H, Helbling A, Mordasini C, Pichler WJ: CVID (common variable immunodeficiency): heterogene Krankheitsmanifestation dieses häufigsten symptomatischen primären Immundefekts. Schweiz Med Wochenschr 2000, 130:1590–1599.

    PubMed  CAS  Google Scholar 

  24. Burrows PD, Cooper MD: IgA deficiency. Adv Immunol 1997, 65:245–276.

    PubMed  CAS  Google Scholar 

  25. Hammarström L, Vorechovský I, Webster D: Selective IgA deficiency (SIgAD) and common variable immunodeficiency (CVID). Clin Exp Immunol 2000, 120:225–231.

    Article  PubMed  Google Scholar 

  26. Español T, Catala M, Hernandez M, Caragol I, Bertran JM:Development of a common variable immunodeficiency in IgA-deficient patients. Clin Immunol Immunopathol 1996, 80:333–335.

    Article  PubMed  Google Scholar 

  27. Carvalho Neves Forte W, Ferreira De Carvalho Junior F, Damaceno N, et al.: Evolution of IgA deficiency to IgG subclass deficiency and common variable immunodeficiency. Allergol Immunopathol (Madr) 2000, 28:18–20.

    Google Scholar 

  28. Johnson ML, Keeton LG, Zhu ZB, et al.: Age-related changes in serum immunoglobulins in patients with familial IgA deficiency and common variable immunodeficiency (CVID). Clin Exp Immunol 1997, 108:477–483.

    Article  PubMed  CAS  Google Scholar 

  29. Cunningham-Rundles C: Clinical and immunologic analyses of 103 patients with common variable immunodeficiency. J Clin Immunol 1989, 9:22–33.

    Article  PubMed  CAS  Google Scholar 

  30. Cunningham-Rundles C, Bodian C: Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol 1999, 92:34–48. Biggest series of well-documented cases providing the basis for the description of the clinical phenotype of CVID.

    Article  PubMed  CAS  Google Scholar 

  31. Cunningham-Rundles C: Common variable immunodeficiency. Curr Allergy Asthma Rep 2001, 1:421–429.

    Article  PubMed  CAS  Google Scholar 

  32. Sneller MC: Common variable immunodeficiency. Am J Med Sci 2001, 321:42–48.

    Article  PubMed  CAS  Google Scholar 

  33. Vorechovský I, Zetterquist H, Paganelli R, et al.: Family and linkage study of selective IgA deficiency and common variable immunodeficiency. Clin Immunol Immunopathol 1995, 77:185–192.

    Article  PubMed  Google Scholar 

  34. Nijenhuis T, Klasen I, Weemaes C, et al.: Common variable immunodeficiency (CVID) in a family: an autosomal dominant mode of inheritance. Neth J Med 2001, 59:134–139. This paper describes the clinical features in a large multigeneration family with many cases of CVID and IgAD, showing autosomaldominant inheritance.

    Article  PubMed  CAS  Google Scholar 

  35. Braig DU, Schäffer AA, Glocker E, et al.: Linkage of autosomal dominant common variable immunodeficiency to chromosome 5p and evidence for locus heterogeneity. Hum Genet 2003, 112:369–378. The clinical features in one large and two smaller CVID/IgAD-deficiency families are described. Also, a strategy for model-based genetic linkage analysis of CVID is proposed.

    PubMed  CAS  Google Scholar 

  36. Grimbacher B, Hutloff A, Schlesier M, et al.: Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nature Immunol 2003, 4:261–268. Four CVID patients, two pairs of two siblings, who are missing both copies of the same large segment of the ICOS gene, are described. ICOS may have been considered a functional candidate for CVID owing to previous data on ICOS knockout mice, but the phenotypes of humans and mice deficient in ICOS are different.

    Article  CAS  Google Scholar 

  37. Vorechovský I, Litzman J, Lokaj J, Sobotková R: Family studies in common variable immunodeficiency. J Hyg Epidemiol Microbiol Immunol 1991, 35:17–26.

    PubMed  Google Scholar 

  38. Vorechovský I, Cullen M, Carrington M, et al.: Fine mapping of IGAD1 in IgA deficiency and common variable immunodeficiency: identification and characterization of haplotypes shared by affected members of 101 multiple-case families. J Immunol 2000, 164:4408–4416.

    PubMed  Google Scholar 

  39. Kralovicova J, Hammarström L, Plebani A, et al.: Fine-scale mapping at IGAD1 and genome-wide genetic linkage analysis implicate HLA-DQ/DR as a major susceptibility locus in selective IgA deficiency and common variable immunodeficiency. J Immunol 2003, 170:2765–2775. This is the latest in a series of papers implicating one or more IgAD susceptibility factors in the HLA region.

    PubMed  CAS  Google Scholar 

  40. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES: Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996, 58:1347–1363.

    PubMed  CAS  Google Scholar 

  41. Schaffer FM, Palermos J, Zhu ZB, et al.: Individuals with IgA deficiency and common variable immunodeficiency share polymorphisms of major histocompatibility complex class III genes. Proc Nat Acad Sci U S A 1989, 86:8015–8019.

    Article  CAS  Google Scholar 

  42. Olerup O, Smith CIE, Hammarström L: Different amino acids at position 57 of the HLA-DQ beta chain associated with susceptibility and resistance to IgA deficiency. Nature 1990, 347:289–290.

    Article  PubMed  CAS  Google Scholar 

  43. Olerup O, Smith CI, Bjorkänder J, Hammarström L: Shared HLA class II-associated genetic susceptibility and resistance, related to the HLA-DQB1 gene, in IgA deficiency and common variable immunodeficiency. Proc Natl Acad Sci U S A 1992, 89:10653–10657.

    Article  PubMed  CAS  Google Scholar 

  44. Volanakis JE, Zhu ZB, Schaffer FM, et al.: Major histocompatibility complex class III genes and susceptibility to immunoglobulin A deficiency and common variable immunodeficiency. J Clin Invest 1992, 89:1914–1922.

    PubMed  CAS  Google Scholar 

  45. Cucca F, Zhu Z-B, Khanna A, et al.: Evaluation of IgA deficiency in Sardinians indicates a susceptibility gene is encoded within the HLA class III region. Clin Exp Immunol 1998, 111:76–80.

    Article  PubMed  CAS  Google Scholar 

  46. Schroeder HW Jr, Zhu ZB, March RE, et al.: Susceptibility locus for IgA deficiency and common variable immunodeficiency in the HLA-DR3, -B8, -A1 haplotypes. Mol Med 1998, 4:72–86.

    PubMed  CAS  Google Scholar 

  47. Vorechovský I, Webster ADB, Plebani A, Hammarström L:Genetic linkage of IgA deficiency to the major histocompatibility complex: evidence for allele segregation distortion, parent-of-origin penetrance differences, and the role of anti-IgA antibodies in disease predisposition. Am J Hum Genet 1999, 64:1096–1109.

    Article  PubMed  Google Scholar 

  48. Vorechovsk ýI, Webster ADB, Hammarström L: Mapping genes underlying complex disorders: progress on IgA deficiency and common variable immunodeficiency. Adv Exp Med Biol 2001, 495:183–190.

    Google Scholar 

  49. De la Concha EG, Fernandez-Arquero M, Gual L, et al.:MHC susceptibility genes to IgA deficiency are located in different regions on different HLA haplotypes. J Immunol 2002, 169:4637–4643. This is another recent study designed to discern the susceptibility factors for IgAD located in the HLA region.

    PubMed  Google Scholar 

  50. Terwilliger JD, Ott J: Handbook of Human Genetic Linkage. Baltimore: Johns Hopkins University Press; 1994.

    Google Scholar 

  51. North ME, Spickett GP, Allsop J, et al.: Defective DNA synthesis by T cells in acquired ‘common-variable’ hypogammaglobulinaemia on stimulation with mitogens. Clin Exp Immunol 1989, 76:19–23.

    PubMed  CAS  Google Scholar 

  52. Pastorelli G, Roncarolo MG, Touraine JL, et al.: Peripheral blood lymphocytes of patients with common variable immunodeficiency (CVI) produce reduced levels of interleukin-4, interleukin-2 and interferon-g, but proliferate normally upon activation by mitogens. Clin Exp Immunol 1989, 78:334–340.

    PubMed  CAS  Google Scholar 

  53. Sneller MC, Strober W: Abnormalities of lymphokine gene expression in patients with common variable immunodeficiency. J Immunol 1990, 144:3762–3769.

    PubMed  CAS  Google Scholar 

  54. Rump JA, Jahreis A, Schlesier M, et al.: Possible role of IL-2 deficiency for hypogammaglobulinaemia in patients with common variable immunodeficiency. Clin Exp Immunol 1992, 89:204–210.

    Article  PubMed  CAS  Google Scholar 

  55. Farrington M, Grosmaire LS, Nonoyama S, et al.: CD40 ligand expression is defective in a subset of patients with common variable immunodeficiency. Proc Natl Acad Sci U S A 1994, 91:1099–1103.

    Article  PubMed  CAS  Google Scholar 

  56. Fischer MB, Wolf HM, Hauber I, et al.: Activation via the antigen receptor is impaired in T cells, but not in B cells from patients with common variable immunodeficiency. Eur J Immunol 1996, 6:231–237.

    Article  Google Scholar 

  57. Zhang J-G, Morgan L, Spickett GP: L-selectin in patients with common variable immunodeficiency (CVID): a comparative study with normal individuals. Clin Exp Immunol 1996, 104:275–279.

    Article  PubMed  CAS  Google Scholar 

  58. Pozzi N, Gaetaniello L, Martire B, et al.: Defective surface expression of attraction on T cells in patients with common variable immunodeficiency (CVID). Clin Exp Immunol 2001, 123:99–104.

    Article  PubMed  CAS  Google Scholar 

  59. Fischer MB, Ma M, Goerg S, et al.: Regulation of the B cell response to T-dependent antigens by classical pathway complement. J Immunol 1996, 157:549–556.

    PubMed  CAS  Google Scholar 

  60. Thon V, Eggenbauer H, Wolf HM, et al.: Antigen presentation by common variable immunodeficiency (CVID) B cells and monocytes is unimpaired. Clin Exp Immunol 1997, 108:1–8.

    Article  PubMed  CAS  Google Scholar 

  61. Boncristiano M, Majolini MB, D’Elios MM, et al.: Defective recruitment and activation of ZAP-70 in common variable immunodeficiency patients with T cell defects. Eur J Immunol 2000, 30:2632–2638.

    Article  PubMed  CAS  Google Scholar 

  62. Kondratenko I, Amlot PL, Webster ADB, Farrant J: Lack of specific antibody response in common variable immunodeficiency (CVID) associated with failure in production of antigen-specific memory T cells. Clin Exp Immunol 1997, 108:9–13.

    Article  PubMed  CAS  Google Scholar 

  63. Jaffe JS, Eisenstein E, Sneller MC, Strober W: T-cell abnormalities in common variable immunodeficiency. Pediatr Res 1993, 33:S24–27; discussion S27–28.

    Article  PubMed  CAS  Google Scholar 

  64. Saiki O, Ralph P, Cunningham-Rundles C, Good RA: Three distinct stages of B-cell defects in common varied immunodeficiency. Proc Natl Acad Sci U S A 1982, 79:6008–6012.

    Article  PubMed  CAS  Google Scholar 

  65. Eisenstein EM, Strober W: Evidence for a generalized signaling abnormality in B cells from patients with common variable immunodeficiency. Adv Exp Med Biol 1995, 371B:699–704.

    PubMed  CAS  Google Scholar 

  66. Levy I, Gupta N, Le Deist F, Garcia C: Defect in IgV gene somatic hypermutation in common variable immunodeficiency syndrome. Proc Natl Acad Sci U S A 1998, 95:13135–13140.

    Article  PubMed  CAS  Google Scholar 

  67. Denz A, Eibel H, Illges H, et al.: Impaired upregulation of CD86 in B cells of "type A" common variable immunodeficiency patients. Eur J Immunol 2000, 30:1069–1077.

    Article  PubMed  CAS  Google Scholar 

  68. Brouet J-C, Chedeville A, Fermand J-P, Royer B: Study of the B cell memory compartment in common variable immunodeficiency. Eur J Immunol 2000, 30:2516–2520.

    Article  PubMed  CAS  Google Scholar 

  69. Jacquot S, Maçon-Lemaître L, Paris E, et al.: B cell co-receptors regulating T cell-dependent antibody production in common variable immunodeficiency: CD27 pathway defects identify subsets of severely immuno-compromised patients. Int Immunol 2001, 13:871–876.

    Article  PubMed  CAS  Google Scholar 

  70. Warnatz K, Denz A, Dräger R, et al.: Severe deficiency of switched memory B cells (CD27+IgM-IgD-) in subgroups of patients with common variable immunodeficiency: a new approach to classify a heterogeneous disease. Blood 2002, 99:1544–1551. This paper proposes a new classification scheme for CVID. Identifying subclasses of CVID patients may be especially useful in genetic studies, where excessive heterogeneity leads to drastic loss of statistical power.

    Article  PubMed  CAS  Google Scholar 

  71. Spickett GP, Farrant J, North ME, et al.: Common variable immunodeficiency: how many diseases? Immunol Today 1997, 18:325–328.

    Article  PubMed  CAS  Google Scholar 

  72. Bryant A, Calver NC, Toubi E, et al.: Classification of patients with common variable immunodeficiency by B cell secretion of IgM and IgG in response to anti-IgM and interleukin-2. Clin Immunol Immunopathol 1990, 56:239–248.

    Article  PubMed  CAS  Google Scholar 

  73. Greer JP, Kinney MC, Loughran TP: T cell and NK cell lymphoproliferative disorders. In "Hematology 2001" American Society of Hematology Education Program Book. Edited by Schechter GP, Broudy VC, Wiliams ME. 2001:259–281.

  74. Baumert E, Wolff-Vorbeck G, Schlesier M, Peter HH:Immunophenotypical alterations in a subset of patients with common variable immunodeficiency (CVID). Clin Exp Immunol 1992, 90:25–30.

    Article  PubMed  CAS  Google Scholar 

  75. Loder F, Mutschler B, Ray RJ, et al.: B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J Exp Med 1999, 190:75–89.

    Article  PubMed  CAS  Google Scholar 

  76. Fischer MB, Goerg S, Shen L, et al.: Dependence of germinal center B cells on the expression of CD21/CD35 for survival. Science 1998, 280:582–585.

    Article  PubMed  CAS  Google Scholar 

  77. Caroll MC: The role of complement in B cell activation and tolerance. Adv Immunol 2000, 2:1089–1090.

    Google Scholar 

  78. Masilamani M, Kassahn D, Mikkat S, et al.: B cell activation leads to shedding of complement receptor type II (CR2/CD21). Eur J Immunol 2003, 33:2391–2397.

    Article  PubMed  CAS  Google Scholar 

  79. Herbst EW, Armbruster M, Rump J-A, et al.: Intestinal B cell defects in common variable immunodeficiency. Clin Exp Immunol 1994, 95:215–221.

    Article  PubMed  CAS  Google Scholar 

  80. Artus U, Herbst EW, Rump JA, Peter HH: Defekte der immunglobulinbilenden Zellen im Knochenmark von Patientem mit variablem Immundefektsyndrom. Immun Infekt 1995, 23:69–71.

    PubMed  CAS  Google Scholar 

  81. Sawada A, Takihara Y, Kim JY, et al.: A congenital mutation of the novel gene LRRC8 causes agammaglobulinemia in humans. J Clin Invest 2003, 112:1707–1713.

    Article  PubMed  CAS  Google Scholar 

  82. Tsukada S, Saffran DC, Rawlings DJ, et al.: Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-liked agammaglobulinemia. Cell 1993, 72:279–290.

    Article  PubMed  CAS  Google Scholar 

  83. Vetrie D, Vorechovský I, Sideras P, et al.: The gene involved in X-linked agammaglobulinemia is a member of the src family of protein-tyrosine kinases. Nature 1993, 361:226–233.

    Article  PubMed  CAS  Google Scholar 

  84. Conley ME, Mathias D, Treadaway J, et al.: Mutations in Btk in patients with presumed X-linked agammaglobulinemia. Am J Hum Genet 1998, 62:1034–1043.

    Article  PubMed  CAS  Google Scholar 

  85. Yel L, Minegishi Y, Coustan-Smith E, et al.: Mutations in the mu heavy-chain gene in patients with agammaglobulinemia. N Engl J Med 1996, 335:1486–1493.

    Article  PubMed  CAS  Google Scholar 

  86. Meffre E, Milili M, Blanco-Betancourt C, et al.: Immunoglobulin heavy chain expression shapes the B cell receptor repertoire in human B cell development. J Clin Invest 2001, 108:879–886. Patients with μ-heavy chain deficiency are described. See Table 2 for less recent papers on genes implicated in agammaglobulinemia.

    Article  PubMed  CAS  Google Scholar 

  87. Lopez Granados E, Porpiglia AS, Hogan MB, et al.: Clinical and molecular characterization of patients with defects in mu heavy chain gene. J Clin Invest 2002, 110:1029–1035. Patients with μ-heavy chain deficiency are described. See Table 2 for less recent papers on genes implicated in agammaglobulinemia.

    Article  CAS  Google Scholar 

  88. Minegishi Y, Coustan-Smith E, Rapalus L, et al.: Mutations in Ig-alpha (CD79a) result in a complete block in B-cell development. J Clin Invest 1999a, 104:1115–1121.

    Article  PubMed  CAS  Google Scholar 

  89. Minegishi Y, Rohrer J, Coustan-Smith E, et al.: An essential role for BLNK in human B cell development. Science 1999b, 286:1954–1957.

    Article  PubMed  CAS  Google Scholar 

  90. Minegishi Y, Coustan-Smith E, Wang Y-H, et al.: Mutations in the human lambda-5/14.1 gene result in B cell deficiency and agammaglobulinemia. J Exp Med 1998, 187:71–77.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimbacher, B., Schäffer, A.A. & Peter, HH. The Genetics of Hypogammaglobulinemia. Curr Allergy Asthma Rep 4, 349–358 (2004). https://doi.org/10.1007/s11882-004-0083-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-004-0083-4

Keywords

Navigation