Skip to main content
Log in

Chemokines in eosinophil-associated gastrointestinal disorders

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Eosinophil-associated gastrointestinal disorders (EGDs) are characterized by a pronounced cellular inflammation. Recent clinical and experimental investigations have implicated a family of molecules known as chemokines in the regulation of leukocyte recruitment in these diseases. The underlying cellular and molecular mechanisms involved in chemokinemediated cellular infiltration are largely unknown. In this review, we describe the role of CD4+ T cells and eosinophils in the clinical manifestations of EGDs and discuss the current understanding of the role of chemokines in the recruitment of these cells in the expression of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Sampson HA: Food allergy. Part 1: Immunopathogenesis and clinical disorders. J Allergy Clin Immunol 1999, 103(5 Pt 1):717–728.

    Article  CAS  PubMed  Google Scholar 

  2. Furuta GT, Ackerman SJ, Wershil BK: The role of the eosinophil in gastrointestinal diseases. Curr Opin Gastroenterol 1995, 11:541–547.

    Article  CAS  Google Scholar 

  3. Rothenberg ME, Mishra A, Brandt EB, Hogan SP: Gastrointestinal eosinophils. Immunol Rev 2001, 179:139–155.

    Article  CAS  PubMed  Google Scholar 

  4. Eigenmann PA: T lymphocytes in food allergy: overview of an intricate network of circulating and organ-resident cells. Pediatr Allergy Immunol 2002, 13:162–171. Detailed review article discussing the role of T cells in food allergy.

    Article  PubMed  Google Scholar 

  5. Turcanu V, Maleki SJ, Lack G: Characterization of lymphocyte responses to peanuts in normal children, peanut-allergic children, and allergic children who acquired tolerance to peanuts. J Clin Invest 2003, 111:1065–1072. This study demonstrates Th2-cytokine production by CD4+ T cells derived from food-allergy patients.

    Article  CAS  PubMed  Google Scholar 

  6. Gleich GJ, Adolphson CR: The eosinophilic leukocyte: structure and function. Adv Immunol 1986, 39:177–253.

    CAS  PubMed  Google Scholar 

  7. Rothenberg ME: Eosinophilia. N Engl J Med 1998, 338:1592–1600.

    Article  CAS  PubMed  Google Scholar 

  8. Weller PF: The immunobiology of eosinophils. N Engl J Med 1991, 324:1110–1118.

    Article  CAS  PubMed  Google Scholar 

  9. Jacoby DB, Costello RM, Fryer AD: Eosinophil recruitment to the airway nerves. J Allergy Clin Immunol 2001, 107:211–218.

    Article  CAS  PubMed  Google Scholar 

  10. Moser B, Loetscher P: Lymphocyte traffic control by chemokines. Nat Immunol 2001, 2:123–128.

    Article  CAS  PubMed  Google Scholar 

  11. Sallusto F, Lenig D, Forster R, et al.: Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999, 401:708–712.

    Article  CAS  PubMed  Google Scholar 

  12. Willimann K, Legler DF, Loetscher M, et al.: The chemokine SLC is expressed in T cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7. Eur J Imunol 1998, 28:2025–2034.

    Article  CAS  Google Scholar 

  13. Heydtmann M, Adams DH: Understanding selective trafficking of lymphocyte subsets. Gut 2002, 50:150–151.

    Article  CAS  PubMed  Google Scholar 

  14. Kunkel EJ, Campbell DJ, Butcher EC: Chemokines in lymphocyte trafficking and intestinal immunity. Microcirculation 2003, 10:313–323. Detailed review discussing the role of chemokines in leukocyte recruitment to various GI compartments.

    Article  CAS  PubMed  Google Scholar 

  15. Campbell DJ, Butcher EC: Rapid acquisition of tissue-specific homing phenotypes by CD4(+) T cells activated in cutaneous or mucosal lymphoid tissues. J Exp Med 2002, 195:135–141.

    Article  CAS  PubMed  Google Scholar 

  16. Svensson M, Marsal J, Ericsson A, et al.: CCL25 mediates the localization of recently activated CD8alphabeta(+) lymphocytes to the small-intestinal mucosa. J Clin Invest 2002, 110:1113–1121.

    Article  CAS  PubMed  Google Scholar 

  17. Kunkel EJ, Kim CH, Lazarus NH, et al.: CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J Clin Invest 2003, 111:1001–1010.

    Article  CAS  PubMed  Google Scholar 

  18. Zimmermann N, Hershey GK, Foster PS, Rothenberg ME: Chemokines in asthma: cooperative interaction between chemokines and IL-13. J Allergy Clin Immunol 2003, 111:227–242.

    Article  CAS  PubMed  Google Scholar 

  19. Elsner J, Petering H, Kluthe C, et al.: Eotaxin-2 activates chemotaxis-related events and release of reactive oxygen species via pertussis toxin-sensitive G proteins in human eosinophils. Eur J Immunol 1998, 28:2152–2158.

    Article  CAS  PubMed  Google Scholar 

  20. Butcher EC, Williams M, Youngman K, et al.: Lymphocyte trafficking and regional immunity. Adv Immunol 1999, 72:209–253.

    CAS  PubMed  Google Scholar 

  21. Souza HS, Elia CC, Spencer J, MacDonald TT: Expression of lymphocyte-endothelial receptor-ligand pairs, alpha4beta7/ MAdCAM-1 and OX40/OX40 ligand in the colon and jejunum of patients with inflammatory bowel disease. Gut 1999, 45:856–863.

    Article  CAS  PubMed  Google Scholar 

  22. Arihiro S, Ohtani H, Suzuki M, et al.: Differential expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in ulcerative colitis and Crohn’s disease. Pathol Int 2002, 52:367–374.

    Article  CAS  PubMed  Google Scholar 

  23. Andrew DP, Rott LS, Kilshaw PJ, Butcher EC: Distribution of alpha 4 beta 7 and alpha E beta 7 integrins on thymocytes, intestinal epithelial lymphocytes and peripheral lymphocytes. Eur J Immunol 1996, 26:897–905.

    Article  CAS  PubMed  Google Scholar 

  24. Lundahl J, Sehmi R, Hayes L, et al.: Selective upregulation of a functional beta7 integrin on differentiating eosinophils. Allergy 2000, 55:865–872.

    Article  CAS  PubMed  Google Scholar 

  25. Veres G, Helin T, Arato A, et al.: Increased expression of intercellular adhesion molecule-1 and mucosal adhesion molecule alpha4beta7 integrin in small intestinal mucosa of adult patients with food allergy. Clin Immunol 2001, 99:353–359.

    Article  CAS  PubMed  Google Scholar 

  26. Eigenmann PA, Tropia L, Hauser C: The mucosal adhesion receptor alpha4beta7 integrin is selectively increased in lymphocytes stimulated with beta-lactoglobulin in children allergic to cow’s milk.J Allergy Clin Immunol 1999, 103(5 Pt 1):931–936.

    Article  CAS  PubMed  Google Scholar 

  27. Cavataio F, Carroccio A, Iacono G: Milk-induced reflux in infants less than one year of age. J Pediatr Gastroenterol Nutr 2000, 30:S36-S44.

    Article  PubMed  Google Scholar 

  28. Butt AM, Murch SH, Ng C-L, et al.: Upregulated eotaxin expression and T cell infiltration in the basal and papillary epithelium in cows milk associated reflux esophagitis. Arch Dis Child 2002, 87:124–130. This study demonstrates a strong association between eotaxin expression and leukocyte recruitment in CMA-associated reflux esophagitis.

    Article  CAS  PubMed  Google Scholar 

  29. Gerber BO, Zanni MP, Uguccioni M, et al.: Functional expression of the eotaxin receptor CCR3 in T lymphocytes co-localizing with eosinophils. Curr Biol 1997, 7:836–843.

    Article  CAS  PubMed  Google Scholar 

  30. Sallusto F, Mackay CR, Lanzavecchia A: Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 1997, 277:2005–2007.

    Article  CAS  PubMed  Google Scholar 

  31. Rothenberg ME, Mishra A, Collins MH, Putnam PE: Pathogenesis and clinical features of eosinophilic esophagitis. J Allergy Clin Immunol 2001, 108:891–894.

    Article  CAS  PubMed  Google Scholar 

  32. Rothenberg ME, Mishra A, Brandt EB, Hogan SP: Gastrointestinal eosinophils in health and disease. Adv Immunol 2001, 78:291–328.

    CAS  PubMed  Google Scholar 

  33. Winter HS, Madara JL, Stafford RJ, et al.: Intraepithelial eosinophils: a new diagnostic criterion for reflux esophagitis. Gastroenterology 1982, 83:818–823.

    CAS  PubMed  Google Scholar 

  34. Straumann A, Bauer M, Fischer B, et al.: Idiopathic eosinophilic esophagitis is associated with a Th2-type allergic inflammatory response. J Allergy Clin Immunol 2001, 108:954–961. This study demonstrates an association between Th2-immunity and eosinophilic esophagitis.

    Article  CAS  PubMed  Google Scholar 

  35. Teitelbaum JE, Fox VL, Twarog FJ, et al.: Eosinophilic esophagitis in children: immunopathological analysis and response to fluticasome propionate. Gastoenterology 2002, 122:1216–1225.

    Article  CAS  Google Scholar 

  36. Strober W, Fuss IJ, Blumberg RS: The immunology of mucosal models of inflammation. Annu Rev Immunol 2002, 20:495–549. Detailed review discussing animal models of inflammatory bowel diseases.

    Article  CAS  PubMed  Google Scholar 

  37. Fiocchi C: Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 1998, 115:182–205.

    Article  CAS  PubMed  Google Scholar 

  38. Hendrickson BA, Gokhale R, Cho JH: Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev 2002, 15:79–94.

    Article  PubMed  Google Scholar 

  39. MacDermott RP: Chemokines in the inflammatory bowel diseases. J Clin Immunol 1999, 19:266–272.

    Article  CAS  PubMed  Google Scholar 

  40. Ajuebor MN, Swain MG: Role of chemokines and chemokine receptors in the gastrointestinal tract. Immunol 2002, 105:137–143.

    Article  CAS  Google Scholar 

  41. Uguccioni M, Gionchetti P, Robbiani DF, et al.: Increased expression of IP-10, IL-8, MCP-1, and MCP-3 in ulcerative colitis. Am J Pathol 1999, 155:331–336.

    CAS  PubMed  Google Scholar 

  42. Williams EJ, Haque S, Banks C, et al.: Distribution of the interleukin-8 receptors, CXCR1 and CXCR2, in inflamed gut tissue. J Pathol 2000, 192:533–539.

    Article  CAS  PubMed  Google Scholar 

  43. Garcia-Zepeda EA, Rothenberg ME, Ownbey RT, et al.: Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat Med 1996, 2:449–456.

    Article  CAS  PubMed  Google Scholar 

  44. Banks C, Bateman A, Payne R, et al.: Chemokine expression in IBD: mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn’s disease. J Pathol 2003, 199:28–35. In this study, the role of chemokines in inflammatory bowel diseases is investigated.

    Article  PubMed  CAS  Google Scholar 

  45. Mishra A, Hogan SP, Brandt EB, Rothenberg ME: Interleukin-5 promotes eosinophil trafficking to the esophagus. J Immunol 2002, 168:2464–2469.

    CAS  PubMed  Google Scholar 

  46. Mishra A, Hogan SP, Brandt EB, et al.: Enterocyte expression of the eotaxin and interleukin-5 transgenes induces compartmentalized dysregulation of eosinophil trafficking. J Biol Chem 2002, 277:4406–4412.

    Article  CAS  PubMed  Google Scholar 

  47. Kweon M, Yamamoto M, Kajiki M, et al.: Systemically derived large intestinal CD4+ Th2 cells play a central role in STAT-6-mediated allergic diarrhea. J Clin Invest 2000, 106:199–206.

    Article  CAS  PubMed  Google Scholar 

  48. Bouma G, Strober W: The immunological and genetic basis of inflammatory bowel disease. Nat Rev 2003, 3:521–533. Detailed review discussing animal models of inflammatory bowel diseases.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogan, S.P., Rothenberg, M.E., Forbes, E. et al. Chemokines in eosinophil-associated gastrointestinal disorders. Curr Allergy Asthma Rep 4, 74–82 (2004). https://doi.org/10.1007/s11882-004-0047-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-004-0047-8

Keywords

Navigation